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ABOUT THESE- .NOTES,

Theie notes consist pri marily of transcriptions of lectures- given in-

the fallI of 1970. and the wfi ter of 1972., For p'Jbl icati on .purposes -th-y have

been _somewhat. aibitratily divided into two p~rts-. The f~irst parti contains

basic material while the,-second discusses some pi'oblems arising at a sl-ightly

higher mathemat ical, leve! -ard includes so*~ -appeodiccs..

Within riarts-the 6rder is ~roughly the order of presentation In 1972,

but the reader need, not Iteel -bound; to read the topics in the order presented.

Cross references betweenlsections are indicated thus: [1].

There, is some dupl~ca~ticn of materialI from,'the, two sets of notes which

were merged to formi the present parts. We have taken the course of not
removing duplicate, material *whenever it seemed possible that something of
value might be lost. Furthermore, another technical reportt. discusses some

of these same topics in less detail-, and can be reconmmended as a summary.

D. Hough

"W. Kahan, "A Survey of Error Analysis," Computer Science Technical Report #41,
University of California, Berkeley, 1971.
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0..INTRODUCTORY REMARKS: .OTIVATION AND OUTLINE

An Example for Motivatiom - An:Anomaly<

Consider a FORTRAN program that contains the following statements:

,IF(O .LT. X •AND. X .LT. 0.1) GO TO 1

I iF(IO. .LT. Y .AND. Y. .LT. 100.). GO TO 2

P2 X*Y

IF(P .EQ. 0) G. To 3

3 CONTINUE

It is possible to reach statement 3 on the CDC 6400 even though you've

checked for x and y not being, zero. How can tl. happen? Is there

anything, wrong with -it? Which laws of arithmetic can-you expect a computer

to obey?

Typical Difficulties

1) There's the problem that only a finite number Of 'numbers can be

-represented on the machine.

,2) CDC supplies something, called - and - (indefinite). Are CDC's

rules in handling these- reasonable? Is it reasonable that you should

,get thrown off the macine if you try to use these numbers?

3) We'll discuss how hardware and software design influence how, careful

the programer has to be, and what can be coded around economically.

4-) You are tco wri'te a subroutine that will solve for the roots of a

quadratic equation, given A, B, and C. The equation is

Ax2 -2Bx -,C 0, A, B, and C are single precision, floating point

V ! I IiIII I ImI I IIII I ! II!I IIIiII



numbers. The roots are to be accurate to within a few units in the

-aSt place, or if a root gs out of range, there should be an appro-

pri'ate message.

5) How can you solve t(x) = 0, where f is supplied by some subroutine?

Is it possible to write such a progranh, given an 'a' and 'b such

that f(a)'f(b) < 0?

If you use the binary chop method (bi-sect-ion) it is costly. You

have to compute

A+BC = 2L0--

and on some machines C need not lie between A and B. (This is on

octal or hexadecimal machines.), What if A+B overflows?

6) Think of Z = X+iY and wanting to compute CABS(Z) = 4 .

If X or Y is about half way to the overflow threshhold, the

square wil-I overflow (same for underflow). It would be worse if a

power greater than 2 were involved.

So you try the subterfuge:

CABS,(Z) = ABS(X)*SQRT(l + (Y/X)**2), 1lx > IYI

Then you only get an overflow message when you do deserve it, from

the multiplication between ABS(X) and SQRT. But you might get an

underflow message, which doesn't interest you, except that you'd get

thrown off. Should that happen? If you turn off the message, you

might miss an important underflow. Should things be this way?

7) Computation of elementary functions: In, sjrt

Someone was computing:
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SQRT(SQRT(X**2 +Y**2)- X)

and iterating it. He got the mess age that he was trying to take the

square root ofa negative number.

It turned at that on his machine, SQRT:(.499...g) was slightly

greater tharr SQR(.500...0). The discrepancy was only' 1 in the last

place. Should the machine mimic the monotonicity of the square root

function? What properties of elementary functions should be preserved

by the machine? Should f(f-l(x)) = x always ho'ld? How can you

insure that etementary function -subroutines will ' Ore sonable thinqs?

8) Perhaps you haVe a syStem, of linear equations tha thave no solution,

Then consider the' system:

x+y=l1
(1X +iO(I + 1-0.10lO),X + y 2

This second one is not singular,. but is it reasonable to expect an

answer? Should the computer distinguish the two systems? Usually it

isn't practical to do so.

Outline of Topics To Be Covered

lopics are not necess'arily to be covered in the order to be discussed

below. because they interlock to a substaitial extent.

1) Can we axiomatize the design of computer floating point hardware?

There zre two ways of looking at this question.

i) Set up the axioms in advance and design the hardrware to fit. Most
[C



of the sets of axioms proposed are too expensive to implement. One of the

qauses of the expensiveness is called (,by Kahan) the table-maker's dilemma

How do we construct a table (or subroutine) which contains ,entries correct

to half a unit ii the last place? For instance if we compute a value

3728.49

and we wish to carry only four digits, can we safely' call it 3728? We all

know that bigray machines. Often yield SQRT(4) = 1.999999999..... to the

limit of their .ccuracy. Perhaps the ariswer to the cited problem is

3728.499999..., that is, 3728.50, so we Should write 3729 in the table.

Now, by increasing, precision, the table maker can get more digits.

Suppose they continue to be nines. The table-maker's dilemma is when to

stop cmutig: and start trying to prove a theorem that the 'answer is

precisely 3728.5. And the table-maker's dilemma inexorably causes the

cost of floating point hardware to go up, if it is to y,ield correctly,

chopped or rounded results on all coMputations.

i'i) Another approach to axiomatization is to find a set of axioms

that describes the hardware on the better existing computers. But ;the

axioms would not be categorical because computers differ so much. You

could not prove programs :correct with such axioms.

Examples are the "multi-precision swindles." A program will be

di.played which appears to be machine-independent, and, by practically

every test, should work on every computer with every input. But there are

rare examples for which the program will not work, which of course pirevent

us frorm proving that the program will work.

Another problem with non-categorical axiom systems is that they' may

lead to proofs that certain calculations can't be done. The proofs are
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correct deductions from the axioms, but onf-many computers the calculations

can still be carried ot with good results!

An excellent discutsion of axiom systems may be found inf- Knuth's

volume 2. Unfortunately his axioms are too expensive to implement. But

*' 2! . we can describe a set that are similar to his but reasonable in cost.

2) For concreteness we shall attempt to solve the quadratic equation. Can

we get the roots accurate to a few units in the last pl-ace? If we think

we have done so, can we prove it? We shall discover that, as in all of

numerical error analysis, we need to learn more about the problem than we

had thought we needed. We shall see that error analysis is so unpleasant

that it should be facilitated by the hardware design to, the greatest

possible extent.

3) Next we will see what has been done in the area of automatic error

analysis. The inadequacy of the conventional wisdom with regard to signi-

ficant figures Will be demonstrated with an example: the QR algorithm

apploied to find the eigenvalues of a tridiagonal -symetric matrix. (See

Wilkinson's 1book oi the algebraic eigenvalue problem.) This algorithm

uses similarity transformations which preserve eigenvaiues. However, it

is perfectly possible that the elements of the matrix produced by the QR

algorithm by exact computation differ in every significant figure from

those computed in finite precision. Yet the end result eigenvalues may

still be correct to within a few units in the 'last place! Clearly the

traditional ideas about significant figures are unreliable. Yet were we

to alter any element in its last place, we would perturb the final eigen-

values far more than any rounding error!' Though no figure of the elements

of the intermediate matrix is correct, they are all "significant."
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Interval arithmetic is- a refinement of the significalt figure idea

which can be very helpful when not abused. Yet it is not difficult to use

correctly, as we shall see. R. E. Moore has written a- bk, Interval
Analysis, and an article, in Engish,, in the Czech journal 4plikace Matenatiky

in 1968.

4') We shall decide what to do about overflow, and uuiderfla. Most people

think of over/underflow as a blunder. Yet we shall see that the wider the

exponent range on a machine, tht more likely people are to be troubled by

L over/underf-low, even, though each cal culatioA is less likely'to over underfl ow.

The reason is that they attempt larger problems over a greater range of

data, s6 that their intuition will be more likely to fail -- causing

unexpected overflow or underflow. Yet in many cases the job should not be

aborted but merely computed in a dif-ferent manner.

5) This leads to the question of execution-time diagnostics. Can we

design, ? system that will tell the usr.:.- what went wrong, and where, without

drowning him in in octal dump? Several, good systems have been designed,

and an .excellent project woul'd be to study these systems. How, are they

related to interactive computing? roes the environment make any difference

in how we treat errors? What will the user do with a diagnostic? Does

the error have any significance to the user? Pe?';aps we need to send the

diagnostic information to the calling subroutine rather than perplexing

the ultimate user unnecessarily,. Can we design a system that will never

bother the user unless it is really necessary?

6) How do we prove that our programs are correct? Proofs are as suscep-

tible to error as programs; Kahan's Theurem asserts that any iproof longer

than four pages is likely to be wrong. We shall prove a square root
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subroutine in a-few pages.

Most of-the standard proven programs are conminatorial in nature and

suggest their proofs by induction. In numerical analysis the proof usually

is not so directly suggested by the prdbleM-. Algorithms in, for instance,

-differential equations-, tend to bear little resemblance to the probl'ems

they attempt to solve. An appeal to cenle, variables will be required in

the proof of our quadratic-solver. In general, we try -to show that our

incorrect ,calculation yielded the stightly modified result of a correct

calculation on a-'slightly-modified input. This is not al.ways possible!
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1. SIGNIFICANT UIGITS, CANCULATION, AND ILL-CONDITION

How Many Digits Should We Carry?'

We shall consider a specific, simple-calculation to demonstrate hew,

our usual rules for carrying digits are mis>leading. Then-we wiil be better

able to, decide & a re~sonable set of axioms for floating point arithmetic.

When we-write A B+C in a Fortran program we are really thinking

of three variables a, b, c wh ich reside in memor-y cells labeled A, B, C.

Our hope is that when this statement is performed the sum b+-c will, be

placed in cel1l A. In' general, however,, the, sum is rounded:

a (b+c)(l+a)

To,',be specific, let b = 1.732 and .c = .004290, on a 4-digitmachine.

Now b+c = 1.736290. But by chopping or rounding the machine.will actual:!y

set

--000290a = 1.'726 = 1.736290(1 00023290,

In general we don~t try to keep' track of a = !.000290 because that would
1.736290

be equivalent to carrying all figures. We only retain the information

that < , for some specified F. What is the worst value that a

could take? This is attained in the case

-+ ,c = 1.0005

a = 1.001

4a7 5xlO0

Note also the case

b + c .9995 ,

a :1.000

-5-5 X10 5
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One might suppose that carrying four digits would limit the s ize of --a to
1 -40* 0-  but the first example is disparate b ,a factor of ten. (On a--

binary machine this factor is two, froi'whic we shall-deduce later that

binary is a better way Of packing precision into storage.)

If arithmetl is always done by performing an exact calculation and

then ounding, we can treat addition, subtraction, multiplication, and

division in a convenient aild uniform way. This ass~ption is almost but

not quite true on most machines, but ,we will assume it for the present

analysis.

When you introduce all the Greek letters into :a program that deserve

to-be there, it can become quite complicated:

D SQRT(B**2 -A*C)

d = (l+e)/b(l+) -ac(l+y))(1+U)

We assume that the squ&re root subroutine gives an error-of a few units in

the last place so that 0 is nearly as small as the other-errors.

Let us consider a quadratic x2 -2bx+c so that a = 1, b 4

1Then ac 1 , ac A- T. But the error will be

restricted to a few units in the last place. The error will increase

somewhat after the square root is taken, but will still be quite small, so

that we car, write

d

And we can see that the ultimate solution w-'ll be correct with real part

b/a and imaginary part d/a both quite close to the true value.



Cancellation

-When can we lose accuracy? On a true subtrAction'we would have

x(+) - y(l+1) = (x-y)(l+)

or

If x is near y, will be large. We examine a different quadratic:

a =l0 - 5, b 10, c 10- 5. Then

d - o 0-O

Unless we carry thirty digits, the 'I0- 0' is negligible. If we only

want a few digits in the answer, surely we need not carry thirty digits.

So d = 1010; If we use the quadratic formula, we get roots of 2x101-5

and 0. But zero is clearly hot a',root, and is accurate to no figures.

Clearly, "cancellation is to blame." But, the subtraction was done with

no error. The error was made when we did not carry thirty figures earl'ier.

Cancellation does not cause error, but reveals earlier errors.

Aow can we change our algorithm to avoid carrying thirty digits and

still get the correct answer? We rewrite the problem in the suggestive

form:

or in general

f(x)- f(X-hh ()

4 "Divided Differences

We could compute the product f'(x)h accurately; unfortunately, it is
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a mathematical approx-imati-on true only -in the limit. 'But we can zcircwtvent

the "'latter ififficulty by introducing the divided d-1fference~ which is a'-

function of two points _x and x:

2

-f(x) X~x =X

ISuppose, foe example, f(x) x n'. Then

n-1 n-2n- n-
Af(x 1,'x2) =x1, + 1  x2- X1 X2  X 2 -

In this ,case we can do the division symbolically, and find an expression

for Af that can-be computed accurAtely when x, is near x2.

Divided differences behave-m~uch like derivatives. For instance,

A(f +g) = Af + Ag ;

A (fg) =(wf)Ag + (wd)Af

where wf(xlx) f (xT') f f(x2)

-Af - u(L.Ag

ug

Note that 'in these cases, the troublesOrne x _x2  terms tave disappeared.

We can also deduce formulas for algebraic functions, which ar(, those that

can 'be obtaine6 as solutions of polynomial equations

n
p(f) = Pj(xf 3  0

0'

Each pj is a polynomial in x.
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For instance if f(x)' = 5x, then

- l, + O-f - xl=O ;

Af= 1
1 2 F1)!x

For our quadratic problem

xl:ac c
a-

-When we recompute -our quadratic problem we find the small I oot quite-

easi:ly to be .xlO-5., The larger root cannot be computed with thiS

formula, for the, same reason that the smaller root could-not be comppued

with the- first, formula. Our final algorithm yields

x-=+ a
X- C

- ax+

With this scheme, cancellation is never t problem. And the moral of

the story is, that we lose accuracy by rounding. Cancellation is merely- the

mesienger which reports the bad news.

Ill-Condi tion

Perhaps,. after the previous discussion, we thought we coul solve a

quadrefic equation accurately every time. We shall, however, see that even

though 1e can- _ as good an a swer as-we could hope for wi.th moderate

preisibt i-t stfil, may not be as gbood as we want. This 1;robletn is

different froin the pre-vmous because no tinkering with the algorithm will
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help. The general-name for this problem is il_-condition.

Cosicder the quadratic

ax" -2bx +c 0

The formula x+ =x(a,b,) -b.+ X2-ac indicates clearly enough that the

roots are continuous with respect to the-coefficients. A, small chavge in

the latter, however, may yield an unpleasantly large variatin in the oots.

Consider, for instahce,

+" 2 2

with roots 1+e, I - e. A change in c of order t2  causes achange in

the roots of order -. A -change of one unit in the .ighth place in c

changes the fourth place of the roots. This is bad because roundihg errors

can be thought of asbeing equivalent to a small perturbation of the coeffi-

cients. If we carry single precision throughout, we cain expect sometimes

to get-only 'half precision in the roots. Recall that we define a good

algorithm as one that delivers the slightly altet-ed result of a correct

calculation on a slightly ,altered input. By this standard our quadratic

algorithm is a good one. Unfortunately many people do not distinguish

between wrong results due to poor algorithms and those due to ill-condition.
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2. RULES FOR FLOATING POINT ARITHMETIC

We now turn to the general prblem of floating point design. Knuth

(Vol. II)starts simply by specifying- the forrat of floating point number's

as,, say,

(sign bit) (base) (exponent) '(integer)

+ 2e i M < I < 2M

The inequalities are added to insure a unique representation. Npte that

the twos c6uld just as well be 8, 10, or 16, among, Otners. Our rules

will not be based upon this format specifically. It ill ustrates two facts:

(1) the exponefits are bounded -- which, however, we shall ignore

for a time;

(2) the set bf numbers is a discrete finite set.

We formulate rules for desirable sets of numbers.

Rule #1: The set of representable numbers should include 0, 1, and if

x then -x. (There are a host of other possibilities such as, if x ( 0)

then 1/x, but these are problematical. Also note that the possibility

of two representations for the same number, e.g. +0 and -0, is not

,excluded if they really have identical arithmetic properties.)

The next rule will have to be changed later.

Rule #2: If we perform an elementary operation f(x1,x2,...) on represen-

table numbers, and the result is not representable, then it should be appro-

ximated by the nearest representable number. Examples of elementary opera-

tions might be +, -, /, ,, and base conversion. Note that there is an

ambiguity here, when the result i,6 precisely half-,way between two represen-

table numbers. This defect will be dealt with momentarily,
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More t-oublesom is-the question, can we actually afford -to implemeht

these ,rules? "The answer will be discussed in. the next Iecture.

Returning to the ambiguity in rule two,- we offer another rule.

Rule #3:. ResLlve the ambiguous case in -a way that -prpserves as many relations

as possible. A relation is a statement like (x+y) = -((.-x)+(-y)). The

widely used- rule "add- one-half in the last place cited and truncate" does

not preserve this relation.

Relations that could be 'preserved could be characterized in the

following way:

Consider three functions: f(x), g(x), h(x), which map representable

numbers onto representable numbers.

Example: f(x) = -x or f(x): = cons:tant

or g(x) = 2Kx (binary-machine, K an integer)

These map representables onto representables except for over/underflow.

To resolve ambiguities in a systematic way, we would want to preserve

the following pr-operty: if h(x &y) = f(x) 9 g(y) we-want the machine

to preserve that relation too. If we round h(-x Ry.) and round

f-(x) 8 g(y), we want the relation to stiill' be trme.

Example: f(x)= -x,. g(x) = -x, h(x) = x, 9 = *

This example is preservation of sign synmetry. If we revers,e the sign

of x and y, the stgn of the product shouldn't change.

On one machi-ne, this didn't happen, Itused a subroutine for multi-

plication. if you reversed the sign of one operand (2's complmnent machine),

it would not reverse the sign of the product. If you reversed the signs

of both operands, you would get s-omething really funny.

On another machine, people used its divide subroutine for three years
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wlfiiout knowing that you get the wrong result if you divide by a negative:

nimber:

x M y--- +' x, y integers

If we could follow these three .rules they would zbe categorical. All

elementary oprations would have- a result uniquely determined by the rule

fnr the ambiguous case. Ar e-ample of a good rounding rule is to round to

the nearest "even" representable number. This rule preserves the -sign

symmetry. (We must, however, :define the two numbers nearest zero on either

side to chave the same Darttyi)

Consider now the ,consequen.¢e of some other rounding rules, in this

Fortran prbgram:

X = Y+Z

Y = X-Z

GO TO 1

Suppose we have four digi-ts and we chop. Let the starting value of Y- %000

and Z = 10-  As. we go around the loop, we get X 1 .L000, Y = .9999,

X = .9999, Y .9998... . Obviously Y wi4l have many values ir this

loop. Is there an ,arithmetic system which will recover the value of Y

every time? None is known. But if you satilsfy rule 2 and rule 3 you will

get o short finite sequence of values for Y.

Now we shall see that the question is not to round or chop, but how

you resolve the ambiguity. This time we add -ne half in the last place anc

then chop. Start with Y .1000, Z x 1,5  and find X = .1001
Y = .1001, X = .1002, Y = .1002,

If, on the other hand, we round to the nearest even representable

number, we find, for the same computation, X .1000, Y = .09995,

I-,
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X .1000, Y = .09995, N- . ' has changed, but only once.

These-consideratioms are not trivial. When updating-a deci)al tape

on a binary computer by copying, with some computation, the binary to decimal

and decimal to binary routines should be approximately inverses. Yet on

some machines that chop, they -are not. Another example is certain eigen-

value algorithms which perform a "shift of origin"' on the diagonal eleeielts

-of a matrix, massage all of the matrix, and then undo the original origin

shift.

'For this general problm, see Dave Matula in CACM.

Exercise. Suppose we represent numbers as a sign bit followed by lo lxi

in fixed point XXXX.XX . What are the interpretations of our rules?

Discussion of Exercise

-We would represent number, a sign bit and the log lxi in fixed

point. This has been. discussed by D. Matula, D. Muller, and Gauss. C-learly

we can do multiplication and division completely accurately, except for

overflow, because these operations iryolve fixed point addition or subtraction.

An add or subtract is more expensive in this system! The technique is

called, addition logarithms. See Fletcher, Miller, and Rosenhead, An Index

of Mathematical Tables. What properties would such arithmetic have?

The distributive law is satisfied precisely. But only one of tile

integers 2 and 3 is representable irh this system! [Is this worse than

2 and /2 not both representable?] This system has never been fully

P explored, so that we can't say that it's better or worse than the usual.

Certain little tricks don't work that we depend on occasionally to give

exact results, e.g. the difference of two nearly equal numbers would not

be precise in the log system.
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3. COST OF., THE RULES

Our purpose is to demonstrate why our rules are too expensive to imple-

ment. Someof these cosits are begrudged unjustifiably, though for others

there are fairly good reasons.

Addition and. Subtraction

Consider first addition and subtraction. We right shift and then add.

How many extra digits should we carry for the result?

"We know that no more dig~its need be Car-ried than the range of our

exponent, which, however, is ;mch too. many. It suffice-s to carry 4 9uard

,a round bit, and a sij~cj bit:

e0 w overflow,
eo tw h, = y guard

9= 7- 9NE ] R = round
S= sticky

You could even time-share the overflow and sticky bits, though it hardly

seems worth it. The st~cky bit tells you if a:iy non-zero digits have dropped

off the right in the rig;ht shift. Now the simolest case is when overflow

occurs. Then we can round by adding five (for decimal) or I (for binary)

in the last place. We will then shift right. In the ambiguous case, we[instead round to even.
The next possibility is that no overflow has occurred but that the number
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is already normalized. We add .,in the last place, i.e. 510 -or 1,

in the guard digit, unless round to even is indicated by G =510  or 12

and R 0 and S = O.

If the result is unnormaqlized wi.th one. zero on the left, we -round in
LXthe round digit, after- checking the sticky bit. If S = 0 and R = 5'10

or 12 a-iround to even is r-equived. Il, there are two or more zeros on the

left, the right shift of the smaller Operand was 'not past the guard digit'

No rounding is requ,:red.

Many peopl'e think they -can get along,-with just a guard digit. But they-

cai't give you correctly either ,rounded, or chopped arithmetic with such ,a

sc.heme! Correct chopping. is deffi'ed, by the way, as replacing the result

by the nearest representable number no larger in magnitude. Suppose you

have -one guard digit and you subtract a much smaller number from a, larger.

fhe much smal-ler number is Yhifted far off to the right and off the end' and

there is nothing to show for it (without a sticky bit). The result is

certainly-correct to one in th2 last place. This result will be a little

bit too big, however -- and therefore not correctly chopped. Why is this

bad? The answer appears to be more accurate. Un a four digit machine

surely the better answer to l,0i- 1.0-0xl0- O  is 1.001 rather than

I .,000, the correct chopped answer. It is surely more accurate. But what

do we know about the end result? With correct chop we know that the true

answer is in the interval [1.000,1.001)-. But with the "better" scheme,

the true answer could lie -in (1 .0009,1.002). which, is a 10% larger interval.

That is, though the accuracy is better, the uncertainty is slightly greater!

And at the end of a calculation we want as small an uncertainty as possible.

If we know that, mathematically, the values in storage satisfy

a+b x+y
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should it be possible for A+B .EQ. X+Y, tobe false?

Exercise: Discover th6 circumstance fn which this can happen.

Question<: Do you round a negative number as the absolute yalue of

the number or round it towards zero?

Answer: You round a negative number to its nearest neighbor anless

it is half way between. That has nothing to do with where Zero is.

0 0
,i repr es e n t a b l e  umbers are lines

A . ..... -A rclesnare evens

actual result rounds to nearest neighbor

half way between rounds to nearest even.

You don't care where zero. is in rounding.

Questien: For normal machines that round, they usually just add I

in the last place.

Answer: Sign-magnitude machines do just add ' in the first bit to

be discarded.

0< >0

------I-,T sign maghitude rounding

direction of rounding by adding in last place

in a 2's complement machine like .E. 635, when you add that 1 bit in, it

moves everything to the right; it doesn't necessarily move the number

closer to zero.
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In a l's complement machine l.:e 6400 the same thing happns as in a sign

magnitude machine.

if you truncate (throwing digits away), you are always moving to the

left..

I don'twant that to happen,in my scheme.

Question: How does 2's complement work?

Answer: Examp.le of 2's complemeht rounding.

T.0 1 -7/8 in two's complement

T.oo\ truncated in two's complement
N

representation for -1, so magnitude hat be-n increased
for a negative number

You, need 1 or 2 round bits. But could you get along ,without the

'sticky' bit?, Students should verify for themselves that you cannot round

to the nearest neighbor without a 'sticky bit.'

Students should also verify that if you 'have to left shift the answer

by more than 1 bit, the answer is exact; Only when a single left shift is

required is there any problem.

How About Bias?

Has "bias" or "drift" been eliminated -by this construct?

Will the following sequence be prevented- from "drifting"? Take x, y

arbitrary and xo = x. Let xi+ l : (xi+y) -y. Is =X 2  x 3  Xil?

Notice that x does not appear in the sequence.

I -



Test on arithmetic a]realy known

truncated arithmetic x, y > 0.

'x+y' is too small x4y -y"1!

thrown away
also too small

Xn+l < x by at least I unit in the last place, maybe 2,

if y has some l's that got thrown, away,-.

You could push -x down unti-l it is comparable to y-; then the process-

would settle down.

A similar thing can happen if you round-,up in -the conventional w!y --

that is, add 1/2 in the last place and throw away -he fraction. But

'theh you drift up instead of down.

Example. xn =1.00001101 9 significant bits

y .100000001
X T.100011041 l.l0001110 stored 'x+y'

r:.l000001

1.00001110 1 1.000011001

when stored

stored(stored(x+y)-y) x that you began with

The final value has increased by, 1 in the last place. This will happen

every timeuntil the initial 1. in x has become 10. Then the extra

digit in y gets right shifted off and the sequence settles down. But

-you can as much as double x by repeating the process long enough.
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Same example by rounding to nedreSt even.

The first time. through you get the same result-:

(1) storedlx+y) = 1.10001110

(2) stored(stored(x+y)--y) = 1.00001110

Now go tirough the cycle again:

1.00061110
+ .10000001

l.1 011101: rounding 1.10001110

1.10001110
.10l0000001

d.o00esnt I : rounding = 1.00001110

Thus x n+2 =" X n+l

There is a change in the first step if x is odd. Then the sequence

doesn' t "drift".

You prove this in general by ,examining all, the diffberent cases.*

Question: Howabout other possible sequences and drift?

Answer: If multiply/divide are in your sequence, it will also settle

down. Arguments are similar to those used by Dave Matula in papers on base

conversion. (See his papers -- usually have 'base conversion' in title,

look in ACM.)

In the multiply/divide case, you can verify the result by observing

that the error can't exceed half a unit in the last place, in either

multiply or divide. So in one step, the error can't exceed 1 in the last

For y < x, you don't have to shift y. Then nothing interesting happens.
If you have to shift y, some digits will fall to the right of x. Does
addition cause x to overflow? Follow one branch. If you don't have to
right shift, look at the digits to the right. Say y > x: right hand digits
of x0 get stripped off, then no rounding errors.
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place.- .You -need to show tha.t i-f the error was 1/2 in both cases, some-

thing peculiar happens afid show that that just doesn't happen.

'Question: Why isn't it economi cal to build a machine that rounds

yoqr way? /

Answer: I said it has not been thought worthwhile to do it this way.

People who build vachines don't see that there is 'much value in building

machines that eliminate the bias. (Nei-ther does Knuth as he doesn't

discuss it at all.) I'm not sure people appreciate what would happen if

you eliminated the hi-as. Certain iterations,,would work better, on the

average.. Certain identities would, be preserved. It would. make it easier

to prove certain relations about iterations, such as ultimate

convergence.

,Examnle V-, z>O

Ye (1. + z)/2.

y = + z/y, )/2.

if (YN .EQ. y@)  go out

else y, = YN

go to 1
On a truncating machine, one thing can happen and on a rounding

machine, another.

You try to prove that this algorithm will terminate (on some reasonable

machine) with two successive equal values for y.

In principle: yl > y 2 > Y3 > ... > yn > Tz

In reality: one > sign becomes tn = sign and you stop. ,ou've

come. as close as you want to V7.

If drift does not exist, it is easy to prove that this terminates. You

can als.o prove that it will terminate for rounding nachines. But it might

not terminate for machines which truncate.



QC'stion: Then the purpose of sticky bit is- to prevent, & 'ft ari'd

that s, all?

Answer: 'Ye$.,, it prevents drift and ft makes things correctly ro.{nd6,d'

if you want the ,nachiie t4 tru.cate correctly, yolu wouid -stif1l ee

sticky bit. It is nctt possib.1le to-achi-eVO the- -type of-loundi 6g desired

ith, onily a guard- dlt. You can, add, I./2 or c~o p VitL On]y a guar dgt

You cannot get correctly truncated arithmetic with only_ a guArd -diit.;-

Now let us, considerimultiply and di-vide. tan ,we satisfy our a -o~sat

a reasonable cost? -Here fs the p ictu re,

+

fiest bit may beO- 0 I~ ZJ Z

When we multiply two singl'e precision normali-zed numbers we -niay get

at most one leiadi~i- z ero, in the double precisioh result, Clearly we -need

at most only the leftmost word plus one di-git .. except when we might be

near the ambiguous case. If we don't car-e about that rule, we can eliminate

about half the work, To follow our rules we must develop the Onti re double

precision product precisely, even! thoug)h, as on the 18,41 360,s only one guard

digit need be maintained and un-needed digits of the producL -oay be continuallyV dropped off at the right. On the 360/91 many tricks are made to speed Qp

the multiply and divide. See Kuki and Ascoly, "Fortran Extended-Precisi-on

Library," IBM Systems Journal, 10, p.39, 1971, aind Anderson-et.al.,
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"Floating-Point-Execution Un1-t,'* IBM Journal of Research and Development,

1,,- 1. 4-S 1967.

Whatever is done -about mut-ip cation, adherinf to-our rules for

nv' divis Om wjIu cost us a factor of two in execution time. Perhaps we've

been thinking of the usual division algorithm which gives-a precise integer-

s -qotient an. remai;der, from which it is easy to implement our rules.

The:trou.ble is- thit our- usual division algorithm is too slow, In the

-search for faster methods, our rules wi I go out of the window.

F ;The- fast divisiOn algorithms depend on fast multiplication techniques.-

AW6 -can divide this way -almost as fast as we can multiply. We convert

to m 'by a,number of multiplications on the numerator and denominator,,

on the general principle that -(+ )(-6) = l-62, to get the denominator

to T,, But At the end we don't know whether to round up or down.

We can do. one more multiplication to get .a double precision quotient.K:

For instance, ,a very troublesome division for getting, a correctly chopped

quotient is

S .9 0 9 .. 9 8
.999 . . 999 . 98999. .989..5. .999..-.99

Clearly we must compute to full double precision plus one bit to get 'to the

eight whi'ch tells us how to chop. But theextra hardware for a double

precision divide, might well un-justify the fast division algorithm!

It is hardly surprising that most machines don't follow our rules.

The B5500 does correctly in all but one instance. So there is hope! The

next lecture will discuss the CDC 6400. For preparation read J.E. Thornton,.

Design of a Computer: The Control Data 6600, 1970.

r , * • -
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. ARITHMETIC ON THE CDC 6400

Number Representation -

We now turn our attention to the capabilities of th local hardware

unit, the Control Data 6400. 'First we need to consider the way the numbers

are represented. The 6000 series uses ones-complLnent floating point repre-

sentation,, so that negatives may be obtained by complementation. For our

convenience we wil.l use signed-mtgnitude representation which is equivalent.

That is, we could not tell if the-results given by the 5400 were secretly

computed in signed-wagnitude and then converted, to ones,-conplement for

output.

If the number is negative, it is represented as the complement of the

representation of its magnitude. Bit zero is the sign bit. Then a positive

number is represented as

S = sign -bit
IS J.ii I--- C = characteristic (1l bits)

I = integer (48 bits)

C is interpreted by complementing the leading bit and regarding 'the

result as an eleven-bit ones-complement binary integer, which is the

exponent e. The reason for this complicated scheme is so that we can

compare two floating point numbers by subtracting their entire 60-bit

representations as integers. Then the sign of the result would indicate

the proper relationship between the original operands. Unfortunately there

are so many exceptions that this idea is unusable.

I is interpreted as a 48-bit integer with binary point at the right,

Then the number represented is

2~ e.
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To make the repiresentation unT.que .we normally consider only normalized

-numbers.

A number is norralized if e = -1023 and' I = 0, in which case it
- 47 48

is a normalized zero, or if --1023 < e < 1022 and 2 < I< 2- 1. in

binary, write

1- O0, e < Oll...1

!P4.-..O0 < I < Il..l I i

[ ith this restraint every number has. a unique representation. We shall see

that this is important in floating point units of the CDC variety. On, for

instance, the 360, addition but ,not multiplication is affepted by normaliza-

tion. On the B5500 normalization makes no difference.

There are a few exceptions. If e = 1023, then the nuiiber is infinite

and lies outside the magnitude range 2li7 e to 2 0ne . i f a numbeo it

generated grPater than 21070 it is replaced by a characteristic of

inf ini-ty, Iff the number you would have liked to-generate had an exponent

of precisely 102J, then th I part is correct. In general the I part

is not related to the true result.

If the true result would nave been less than 2-976 then it is

replaced by zero with no indication to the user, except that he may notice

that the product of non-zero numbers is zero. When an infinity is generated

there is no indication except the infinity characteristic which may be tested.

The machine may be operated in two modes. In the most common, the

subsequent use of an infinite operand aborts the job. The user is given

the address of the word in which the instruction was located which tried to

use the infinity. He may be able, to determine which instruction in the Word

caused the interrupt.

Im mm m m mm• m
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In the alternative mode no interrupt occurs and there may be genated

a new kind of object :called an indefinite- Tg, with e = -1, in accordance

witkcertain -rules, such as:

0 "* =

number / 0

Note that an indefinite will never go away, but an infinity may disappear!

These rules may seem safe but in fact they are not, as we shall see.

There i_$ fquestion yet of what constitutes azero. The multiply and

divide units treat any-quantity with e = - a,1123 As a zero. This, was done

to speed processing of sparse matrices by checking for zero factors in

advance of multiplication. But the add-subtract logic checks all sixty

bits and calls the number 'C only if it is precisely +0 or -0. So it
is-possible to use a branch on zero instruction to "test an operand,.which

uses add-subtract logic, get a result of non-zero, divide, and get an infinity.

This is a mistake in the design caused by the fact that the multiply-divide

units test only the first twelve bits o? the word. By adding one more logic

elerent to test the thirteenth bit, the problem could be solved. Instead.,

the problem was given a name (partial underflow) and announced as a feature

in the 7600.

Floating Point Instructions

Now we are ready to discuss the floating point operations. There areInormal (chop) instructions such as FX, rounding operations called RX,

and operations to get the second hall' of a double precision product, DX.
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On an FX multiply you get the 48 most significantbits of the product.

A DX multitly on the same operands yields the 48"least significant bits,

with an exponent-48 les than the FX :results. Note that underfl&hould

happen in the DX result and notin the FX. Except in that case, the.

double precision product is the sum of the two numbers.

For addition things are not so handy. There is in effect a 96 bit

register in which the smaller operand is placed, and then right-shifted,

with digits off the end if necessary:

+ 1:.96 bits

r I-f an overflow occurs on a- true add both registers are shifted right one and

b'6th exponents adjusted. On a, true subtract, 'however, FX will give you

.an unnormalized result. Therefore we usually follow with an NX normalize

iTstruction, which, unfortunately, only normalizes the left part. To see

the problem here, consider this four-bit example, 1.000- J111:

1 . 000' 01000

.1l1 1000

0. 000 1 000

EX DX

When the result of FX is normalized the answer is zero, yet clearly the

operands are unequal. If we write A = B-C we can't have a : (b-c)(l+,,)

with r, small. In this case, in fact, a = -1. The best we can say is

that a = b(l+a) -c(l+y) with small a and y, which is substantially[ less convenient for error analysis. Here 0 = .001 and y = 0.

FI mm m ae m ml •• m• • • •• • m m m mm • Ll



4-5

'We would hope that. if a result could be represented prtisely, theh

it would be. Fortunately In this case we could get around this by extra

coding. For the sequence

FX2 X1-XO

NX2

insert instead-

FX2 Xl-XO

NX2

DX3 Xl -XO

NX3

FX2 X2+X3

This gives very nearly the correctly chopped .result. We. need five instructi6ns!

It is hard to pei-suade compi-ler writers to generate this much code for

such a simple operation.

Rounded Addition andSubtraction

We turn our attention now to the rounded arithmetic instructions which

are in a unique form in these CDC machines. Rounding is normally thought

of as adding one half inthe last place after the operation has been com-

pleted. This may generate a carry chain which will slow things down. On

addition the CDC units add one half in the last place to both operands before

the operation. When the characteristics of the operands are 'equal the

correct result is obtained. When the characteristics ,differ by A, then,

in ffet, he uanity1 -(Ml)in effect, the quantity 1,+2 is added to the Yesult, if no overflow
1., 1 2"A+ll;. " T i

occurs. [If overflow occurs, then the quantity is j 4 - +) This

3
quantity might be as large as T The results are what we would expect

when A = 0 or A is large. But the overall arithmetic is very hard to
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predict, and situations which maybe bad in FX are worse in R9.

In particular, whenever we know..that x+y = a+b, we want X+Y .EQ. A+B.,

Yet this is sometimes not the case on the 6400 if x and y are opposite

in sign and large, but a and b are-small. This can occur using either

FX or RX arithmetic.

What .Relations Does the 6000 Satisfy?

We have mentioned that we would like our hardware, which of necessity

must approximate results, to preserve as many desirable relations as possible.

For instance,- if we know that the numbers represented in the cells A, B, X,

and Y, satisfy the relation

Ia xb k x

thenwe would want this relation preserved by the machine operation *.

The value stored for A * B should depend -only on the value a * b, and

not on *, a, or b. The purest kind of rule, such as Knuth proposes,
whereby we perform the operation correctly and then, round, is ideal. On

the 6400 we can nearly achieve this goal on FX*, FX/, and FX± using the

five-instruction sequence given in the previous lecture:.

Exercise: Verify that the results of the operations indicated are very

nearly independent of the operands.

There are, unfortunately, plenty of discrepant cases oh the CDC machine.

The ordinary FX+ and NX sequence provides several. Consider the

following program:
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X 0.5
-F ='X65*8+

DO 2 1-1,lO0-
'X-X*2. 0
Y-X*F

r$If thi: rgrmi compilied on the standard RUN coplraathen. execu tedi

the value of X I,n the loop is 21 ,an thel vaIu ofYis21( 24

equality:

FX3 Xl-X2

NX3 X3-L ZR X3,..

The problem is that the difference between X and Y i's developed in the

V DX part of the sun.. The FX part is zero, so X appears to be equal to

Y. For any machine in which the result depends too strongly on the operands,

such an example can be constructed.

One easy fix that suggests itself i's to compile

!X3 Xl-X2
ZR X3,...

But now another type of program can get Into trouble, namely one that

includes a statement of the form

IF(X.NE.Y) ..... A/(X-Y)

That is, we have trouble with the uncertain definiti-on of zero, since the,



F X.NE.Y will be done by an. ijneer subtraction while the -divide unit idH,

receive the result of a floating point subtraction which may well be zero.L To get.by on a CDL. machine we--couldl write

IF(X-Y.NE.0.0).. .-A/(X-Y)

but we have lost a degree of machine independence. The RUNW compiler has

been modified by D. Lindsay to perform these tests in a reasonable way (see

Appendix IIi).

We have an example of the CDC RX± instructions provided by Wirth

in fi.v,# bit arithmetic., In five bit arithmetic the number 33 is not

representable so it should, be represented by either 32 or 34. In an RX

instruction to add. 16 to 17 we get

Round bit

10000 1

+l 00 01 1

1 0O00 1 .4--4 34

Now if we add 31 And 2:

+ 1 0 0 001

1 000 0 , 1- -  0Ol-= 32

So the CDC RX instructions have the same problems as the FX.

Rounded Iultipli-cation

We now considpr RX*, Recall that in FX* the result is independent

of the operands. In RX, if both operands are normalized, then the round
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is accomplished by adding a one to the result prior to final nomalization:

+ 01
(Norm) E...IJ _-J

(The 01 is present at the start of the multiplication in order to avoid

a long carry at the end.) This scheme is reasonable if post-normalization

occurs; we have added one half in the last place,. But if no normalization

occurs, we have only added a quarter. So the error in an RX* may be

3almtst as large as T in the last place, compared to I for FX*. But

now the end result depends on the operands. Consider

A = 22*(246_-)

B = 5*245

X = 2 24(2 23+1)

y = 5*223(223.1)

Then, although ab = xy, RX(A*B) < RX(X*Y)! Still, the difference is ,only

one unit in the last place ... which is not serious, unless the difference

is between zero and ,not zero.

1'!
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An Example

Here's an example, in 2 decimal arithmetic, utilizing "DC's method of

prerounding, in which

A*B 0 C*D

even though, in truncated arithmetic, the products are equal.

A = 45 -45,

B = 19 x 19

L 0850 860 as the answer

C = 95 95

D = 9.0 -9.0
8550

)58555 850 as the answer

Question: Is there a large range of numbers that will do this?

Answer: I used a table of factors, taking -a number that had lots of

factors and which had a leading digit that was large. I wanted-it to be

an eight, or the example doesn't work out so nicely,

The significance of this example is not that something is going to

happen to you if you use rounded arithmetic but merely that rounded arith-

metic on a CDC cannot be characterized by Knuth's rule that the result

should be obtained from the true value by following a rounding prescription,

This is true because the rounded result depends not only on the end value

but also on intermediate values.

To get a correctly rounded product, we can do

FXO Xl*X2

DX3 Xl*X2

RXO XO+X3



For division- CDC adds -in- the: last place to thow dividend- that

is, the binary string 0101....

I 1 L Z1'0 1 0 1 01l .

On the average, onei can expect the quotient -obtained -here-to, dif fer

from the true quotient by zero. lCurio6usly, ion t-he 700 -the quiantity

is used instead of IT 'This could-cause endless agonizing if We try to

transfer a program.

Unsolved- Probl Iem: Is-there an example of ani RX 'di-vision. in which

x+y = a -b tbut X-/Y.NEA/S?

Unfortunately, there is no easy way- of getting A quotient ~corriectly

rounded on the CDC 6400. The -best, that cany be done is to take the given

FX restqlts, multiply it times the divisor to get a doub1e ,precision productIwhich is then subtracted from the dividend in double precision to get the

remainder. Dividing the remainder by the divisor yields the correction

which must be added to the fifst qpotient.

Pecultles of CDC RoundofIf Error' (by Fred W. Dorr and Cleve B. Moler)

Kahan tf proposed the following Fortran program as an indicator of

compuzer roundoff error:

H =1.0/2.0
X 2.0/3.0-H

Y =3.0/5.0-H
E (X+X+X) -44
F =(Y+Y+Y+Y+,Y)-H
Q 2.0*F/E

PRINT, Q
SIMNM Newsletter, Vol. 8, No. 2, AprVil 1973.1

t W.'Kahan, "A Problem," SIGNLIM Newsletter, Vol. 6, No. 3, 1971, p. 6.
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he problem is. to "fijd what possible values Q can assume on different 

Com.uter. Kahair intended that :AS be used in the co putation of Q,

b t we have found .that the sign of Q is also tnteresting.

Thorough analysis of complicated nLueric ! algorithms requiies detailed
understafiding, of computer arithmetic. Study :of simple algorithms such as.

this helps in that uh-derstanding. We have run this ,program oW the

CDC-6660017600 cbnputers at the Los ATAmos Scientific .Laboratory. In

describing our results we, wil call, the above set of instr!ctions Progoam I.

We also consider a modi-fication of this program -In which the first three

lines are replaced by

ONE = l..0,

TWO'= 2.0

THREE = 3.0

FIVE = 5O-

H = ONE/TWO

X = TWO/THREE-H

Y THREE/FIVE-H

and we call this version Program II. On both. computers it is possible to

select either truncated or rounded arithmetic. The resulting values of Q

are summarized in the following tabl'e:

_ 6600 7600

Truncated -6.0' -6.0
'ArithmeticProgram I -

Rounded
Arithmet.ic -6.0 -6.0

Truncated 3.0 3.0Ari thmeti c
Program II -1- -

Rounded -6.0 4.0
Arithmetic
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I There are two interesting featbres in this table: the differences

between the Nq "(:dentical" :programs on a given niachine, and the difference

betwen the two machineS on Program Ii with roundedoarithmetic. The two

programs produce different vailues on a given machine because the col~iler

computes-values for the constants 1,0/2.0, 2.0/3.0 and 3.0/5.0 . The

va~ue for 1.0/2.0 is exact, but on both compters the value for 2.0/3.0

is rounded up while the value for 3.0/5.0 is rounded' down. This occurs

because the compiler computes the constants in two separate steps. The

first is a rounded reciprocal :divide (1.0/3.0) and the second is a truncated

multiply (2.0*(l.0/3.0)).

The rounded arithmeticcase for the 6600 is the same for both programs

because the 6600 "rounded divide" computes exactly the same values for

these constants as the compiler computes.- Since this is also the reason for

the diffeence between the two machines on Program II vith rounded arithmetic,

let us explain this phenomenon in detail.. The roanded divide instruction,

which is actually a form of "pre-rounding," is executed on both machines

by the following algorithm: (1) take the 48 bit-mantissa of the dividend

and append a 48 bit number o after the least significant position,

(2) divide this 96 bit number by the 48 bit mantissa of the divisor, and

(3) truncate the result to 48 bits. For the 6600 a and for the 7600

a =. This algorithm produces the following rounding characteristics

for the constants :

6600 7600

2. /5.0 2.0/3. 3.0/5.0

Rounded reciprocal
divide followed by up down up down

f a truncated multiply

Truncated divide down down down down

Rounded divide up down up up
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The up- own combination leads to, Q -6, -down-down leads to Q- 3, and

up-up leads to Q - 4. The true values for the ccnstants are:

2 0. 52525252.-.8

3 0-. 46314631..

Overflow and Underflow

We now consider what 'happens on the 6400 when overflow or underflow

occurs. The descriptions in the manual seem eminently reasohable, and

some experience with the consequences is necessary for a proper appreciation.

Suppose that we are operating. in the mode which allows indeterminate forms

to be used. We have the following program, ,along with the naive expected

values and the actual computed values:

Expect Get

X = 2.0**069 21069 21069

Y = 4.0*X 21071 or 00

Z = Y-2.0*(X+X) 0 or -&

T = ((,(Y-X)-X)-X)-X 0 or -

U = I.O/T c or -& 0

V = X/Y or -8- 0
4

We expect to 'get a value that is either correct or indefinite. Unless

we simulate each step performed by the 6400, however, we would be surprised

by the last three results.

There is no consistent way to compute with infinities. After all,

some infinities "really mean" infinity, as in 1, but others mean a number

that is just slightly too large to represent.
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':"With underflow the situaton is even worse because there is never-any
indication that it has occurred. Here is an example:

Z= 2.0**(2**l0-48)
C = 1.O/Z

SA= C+C
B = A*l O.0**9

D = A+B
X = (B+D)/A'

Y = (,(AX+B)/(x+D'))/((A+B/X)/(,i.D/X,))
(this ough, to be 1)-

IF (A>O and B>O and C>O afnD>O and X>O and Y>2.9g9) WRITE Y

All of-these numbers are positive -aiJ not .zero. No subtraction can occur
so we donh't worry about, cancellation. Y might differ from I by a few

units in 1he last place,

But this program prints out -Y = 2.90,999999875 What has happened is-
that an underflow has o&urred without any warning. W- find that

Z = 2976

C = 2-
976

A = 2-
975

-975 9B = 21975109

D 975(l0g i)

X = 2x10 9 + I

Considering the mechanisms for , and / we ,an actually predict the value
of Y, taking into account the threshhold for underflow, as follows:

AX+B = 2"975*(3.109+l) and the 6400 calculates this precisely.

When we try to compute CX, the multiply unit notices that the
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exponent of C is -1023 and cals C a zero, when C is actually not

zero but is "partially underlowed." So

9g75 9 )
CX+D= 2 *(l+1)

th.For comparison, on a cleaned-up 6400 with that 13 bit wired into the

multiply zero test

CX+D - 2-976(4.109+3)

'Then

AX+8 3--09 90
CX+D _ 3+0- 3 7 2*10 -7 on the-6400CX+D l +lO - 9

and

6,+ 2*10-9 T - O on the cleaner version.
4 "+ 3*10 -

'Now B -97 1 <9-976 and is therefore set to zero asX 2.109 +i anunderflow

B 2-975A+ 2 on either system
D 2-975(+ 0-9 so 2-976 D -975

(10) < .<2'
2+1

which means it is partially underflowed. The add logic is not aware of

such distinctions and adds it correctly to form

9 + 310"9%

2+10

which is not partially underflowed. Then

A+B/X 4+2"10" 9 1 - ."
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--Finally we compjte a factor of two difference! Y 3 3- .l0 "  on the 640
and Y A 3-1-u on the cleaner Version. The system fir underflow and

2 4
overflow is clearly a serious problem on the 6400. We shall see that more

rational schemes can be devi-sed.

Inegr Overflow on the CDC 6400 -

We study integer overflow to ilustrate the principle that machines

can't be designed piecemeal. There seems to be an inevitable interaction

among various features of the machine so that poor design in one unit

inhibits efficient action elsewhere.

Our CDC machine was basically designed to facilitate parallel processing

of instructions to the greatest possible extent. At any moment it might not

be possible to tell what order of execution. was intended by the programmer

for the instructions currently in various stages of execution. The CDC

machines keep fairly well co-ordinated except in a few critical instances.

It was decided not to interrupt on overflow or underflow because it was

quite possible to get in the situation that, when overflow or underflow was

detected, a later instruction had already been started which wiped ;out

one of its input operands so that the program coulid not be restarted. Other

machines with look-ahead features such as the 7094! were prepared to discard

some decoded instructions if necessary in order to have over/underflow

interrupts. This is reasonable for machines with small sets of registers.

In contrast, when the 360/91 was designed it seemed unreasonable to do this,

so there is a problem of "imprecise" interrupts. The interrupts occur,

but the location of the error specifled to the user is usually one or two

words from the instruction which caused the error. Thus it was decided

that the 6600 would not have such interrupts at all. Today we shall see
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what c b.sequences this entaijs in the case-of integer overflow.,

I = 2**40

DO 11 L=1,18

-_ J 1 +3

K =-I

IF(J>O AND K<O AND .J+K=3 AND J<K) WRITE...!

Why did thi's program qutput an exclamation? It was surprised that

K<O<J and J<K. What has gone wrong has nothing to do with anything like

rounding. Rather, the compiler test for J<K did not take into account

the possibility of integer overflow. In this program I = 258 J = 258+ 3-

K= -258. The J<K test is converted to J-K< 0,. J - K = 259+3 which

overflows, producing a negative number, with ones in bits 59, 1, and 0.

With no overflow indication, the machine has erroneously concluded that

J < K. It would have been complicated tc include overflow indications for

the eight X registers so it wasn-t done.

The first example may be dismissed as the justifiable result of dealing

with i norally large integers. Now suppose we are computing an infinite

sum by the following formula:

1l n 1L in=o I - n +  +R,

3 1.3

and we know that to get the residual IRI < e then L>--. Suppose we
/1

want = 10- 0 so L = 300,000. Consider the following innocuous program:



EPS 10-10K L =3.0/SQRT(EPS)

INCREM=

WRITE L, The sum-of L=... term is..

SUIM = 0.

1 00 2'N=l,L,

EN'= N

[2 -SUM =SUM+tN/(l.O+EN**3)

WRITE SLUM

SUMINF =SUM+l .0/EN

.WRITE SUMLNF, The infinite svmn is ...

Now the output for the program as written was:

THE SUM- OF 300,000 TERMS IS USER CIPU ARITH ERROR

1: DE"rECTED BY MTR, FL=007455

As it turns out, we had a division'by zero. Clearly this dould only happen

at-line 2 if' N=-l. But that can't be. N runs from 1 to W0,000.

After some detective work the user observed that by changing line 1

to read DO 2 N=1,L,INCREM the following result was printed:

THE SUM OF 306,000 TERMS IS 1.111640603830
THE INFILNITE SUM IS 1.111643937163

What had happened? As- originally compiled the incrementation of the

DO loop was done with the SX instruction with an 18-bit adder. 300,000

is so large that the 18-bit adder went through its entire range of positive

values, overflowed to its largest negative value, and continued to increment

until 'Vt reached a value N=-l, causing arn infinite value on division.
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The same compiler uses the O-bit: IX instruction to increment the DO

loop if a variable name is specified for the increment! So the modified

program produced a moderately correct result. But how are we ever to discover

bugs like this? The hardware designers did not make things easy for the

compiler writers, but there is no excuse for this!,

Consider the AINT function on our system, which produces the greatest

floating point integer less than or equal to the floating input. The CDC

compiler produces

UX2 XlB2

LX2 B2

PX6 X2,0

NX6 X6

The left shift will normally cause a right shift because B2 is

negative. But if the integer is larger than 247, it wi-ll perform as a

true left shift, and the most significant digits will be lost, and the sign

may be erroneous as-well. Again, the machine designers did not allow for

an overflow to inconveniently disturb the pipeline and the software perpe-

tuated the folly.

This has been improved on in, The RUNW compiler. An unnormalized,

zero (characteristic = O) is produced in XO.

MXO 1

LXO 59

then

FX2 Xl+XO

NX2 X2

This takes care of the problem. If the integer is a small one it will be

right shifted to align binary points with the zero. If it is large, the
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zero will be shifted and the input unchanged, which is desired.

We have brought up the point of integer overflow to demonstrate how

untidiness on the part of the machine design induces carelessness in the

software and then by the users, because there is nothing to be gained by

being careful. The best way to handle-over/underflow is to not lose infor-

mation, and this can only.be done if the registers contain more bits than

can be stored. Second' best is to interrupt the machine if an overflow is

glng to occur-which would cause information to be, lost. See Kahan's

SSD #159. We are going to, see that therewas less trouble On the 7094

from overflow than the 6400, even though it had only a tenth the magnitude

Exercise: What should be done on the CDC 6400 to compare two 60-bit integers

to find the larger?

Kii l~lII II
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5. SOFTWARE CONSPIRACY AND THE COST OF ANOMALIES

We have seen what Pardware flows alone can do. Let us now consider a

case of inept hardare and software conspiring against thd-bser-. This

particular case occurred. on the IBM 7090, but something like it could happen

on the 6400.

What Does LOG Have To Do-With Differential Equations?

A graduate student had developed a marvelous idea for boundary ayer

control on wings of short take-off planes. He thought lift should be

enhanced by his idea, and' had set up the appropriate differential equations

to check his ideas, Although he couldn't solve them analyticaily, he had

some information about how they should behave and approach a limit as the

independent vartablie went to zero. The limit was not calculable and,

the approach may not be smooth (like 1+ A 1 as x 0 or

1 + T as x+Q).

limit 1 decreasin x

He couldn't show analytically that the l1imi~t existed so he turned to

numerical methods.

His coefficients misbehaved in a variety of ways so the standard

methods were inapplicable, and besides, his job was wing design, not

+You solve a differential equation by breaking the space up into discrete
little chunks, and consider functions with a slope in those intervals. The
graph is replaced by a sequence of dots and this is justified if you can
show that as the mesh gets smaller, the dots approach a continuous curve
that is the solution.
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7L. numerical analysis.

So, he did his work, but was unhappy because of the Way that his

solution was behaving. Rounding errors did play a role. The solution went

-toward -o as the independent variable approached zero.

limit solution

Clearly, something was going wrong as the vertical. axis was approached.

Since he was not a numerical analyst, he did the obvious thing, and

converted his program to double precision. For larger x, the solutiocn

matched perfectly, but there was still that odd behavior near zero. He

decreased the mesh size, but the solution still went very far down. He

knew this was not the physi-cal solution -- to be of any use at all it had

to st'ay positive.

By now he had used up lots of machine time, and seemed at the end: of

what otherwise might have been a promising Ph.D. thesis.,

At this time I [Kahan] was trying, to debug a logarithm subroutine

used to calculate A**B by taking exp(B*A log(A)). For some values of

A and B the results were shockingly less accurate than others.

Looking over his shoulder, I saw he was using a logarithm routine

and suggested he use mine, which was more accurate than the old. How much
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more? My error was. about .52 units in th#n last place and the, old one's

error was about 3 units and it had other interesting difficulties.

So he used my program and the single precision results reached a limit-

but the double precision results continued to go down.

single precision

limit Y.

X
[I

double precision

At this point I became interested, He was interested, of course; the

single precision answer said he'd get his Ph.D., the double precis-ion that

he wouldn't.

le was trying to compute something like

f i)- n(l+x')- 4f'(x) = l< X < ~10 4

X

This function is really very well behaved, except near x- -1.

I

Strictly speaking, the point at x =0 is missi'ig. So use a power series

+ 1 12+.. for -1 < x-l in this range.
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But this man had-progranmned so that he could transferrhis program from

the 7094 to a UNIVAC 1107, which he'd soneday be using. They use different

wod lengths. So he wrote:

FUNCTION F(X)

iF(X .LE. -1) GO (OUT)

Y = 1.O+X
Z Y Y-1.'O

he's thinking

X = .OOOx xx

Y = .0000x

Z =.000x

so y = 1+t, not l+x. If x is small,, I've made a rounding error and

I won't tae, the log of l+x but the log of l+(something else). "Then

in dividing by x, I get the wrong thing. So I'll take the log of

1 + something &divide by that something. And since my function is continuous

and well behaved, I'll be near my point x and be on the graph of the function.

F 1.0
IF(Z .EQ. 0) RETURN

F = ALOG(Y)/Z

RETURN

END

He settled for F(z) instead of F(x) since z is not far from x.

If everything had gone according to plan, he'd have only been off by

half a dozen units in the last place, most attributable to rounding.

His reasoning should have been right but it wasn't. It wasn't right

in single precision becai e of the way the log routine worked.

If you want ALW (F), F is reduced to the range 1 < f < 2. Then

the following is computed:

f+Vf

kD- . -'. ... . . .-- - . -,.-- k -,, -- -' -- , " ," "-'i- '' ," 'm ' •' -- ---+' /- .
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&Ait /2 is not ,representable by a mAchine number. So when v" is ,off,

you are in effect changing f from what it was to something else. And

f is changed differently in numeratorand denominator. You are calculating

ALOG(F(I+e)) not ALOG(F}).. 'But he wanted to compute this for F close

to 1. (l+e) is also ,close to I and so their logs are-,omparable.

So in-single precision things went wrong in a systematic-way and drove his

graph-down. When'he used my program, which didn't do this, the graph

straightened out.

But he said that'the double precision answer still went down, and

after all, isn't double precision-more accurate? in. eperal that's true,

but the double precision log functi-on, which did logs differently and

should have been more accurate, truncated in a funny way.

1f x was tiny and negative, the wrong number got subtracted and

z was off by ,about 50%. That was the hardware conspiring,

This story pretty well summarizes how things look to an engineer

working op a thesis or building something, who doesn't want to understand

the equipment.

How Should We Code To Prevent Conspiracy?

We see that it would be good if floating point units computed correct

results and then ,rounded or chopped the result to fit in the word. Such

schemes exact a, penalty in time which is onerous to engineers who are

designing to optimize a certain definition of performance., The consequence

is that, from our point of view, the hardware is a set of compromises which

are more difficult to describe than the simple model mentioned. If there

is no guard digit of some sort, it brcomes much more difficult to tell what

we can compute economically. It seems likely that any computation that



can be done with a guard digit can be -done without, but the designing and

debugging of programs for certain computations becomes much more tcdibius.

Let us consider a. calculation of a type common in engineering ptractice,

that of the divided difference of a lbgarittm:

log(x 1)- log(x2)
Af(x I-x2 = X - x2 - , x 2

1-x ' x = 1 =x 2
x X 1  2

We've already seen howwe can get veiy low significance in the computation

of log(tX)-log(x2) when xl-x 2 is smal, even if xl-x 2  is known

precisely. We wboU2d wait to do this Calculation differenhtly if x and

x,, agree to some number of figures, which is., however, a rachine dependent

computation we wish to avoid, as it may not work on the next machine it is

run on.

We can rewrite the divided difference as

1 og(-)
I ___ 1
x2 Xl x2 2

x2

p(z) = 1 if z l

=l if z=l

This code is now independent of references to significant figures.

But we might wonder what happens when z is near 1. Now z will be a

rounded quotient. We could have, using 4-decimal digit arithmetic,

z = .9998 z-l = -.0002 log z = -.0002

X 99989998 X. 1 = -.0001002 log L = -.0001002
Y Y
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Perhaps surprisinglyi we yet .00= 1.00 in either case! We can show

[rigorouisly that changing z by an ulp changes 4(z) by less than an up

So rounding 1 will cause no problem. Here-we have an example of a calCu-
y

latioh where the intertmediate results z -i and leg z are accurate to no

significant 'figures yet the results are perfectly- good, because the proper

relation of the intenmediate results was maintained.

On CDC-type machines we can run into troubles in various ways. Z may

be cowpared to 1 and fourd unequal 'by an integer compare,, and then z-1

wil-l be computed to 6e zero by the hardware.

If z < 1 slightly the answer could be wrong- by a factor of two, when

z -i is computed as (l ) -l(i).

However, these are merely hardware erroirs. Surely the software would

be written to ameliorate some of the flaws, or at least not make them Worse,

o at least not introduce new ones! But such hbpe-s are, alas, in vain. To

compute logs, programmers often attempt to, use mathematitcal identities

such as

log(z) log( .) + log

When z < 1 the power series expansion of this form converges rapidly.

Unfortunately 'is not :precisely representable, so that we actually

compute

J z - -€ +

~Z + + E: c)

where
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Instead of (l+X)log-z, we get (l+X)log(z+r)-. When Z is near one, j('z)

may not be computed accurately because the logarithm may not bc very good .

If, in addition, the hardware computes z-1 inaccurately, the results are

totally unpredictable. I
-- z-I - p 2-

The sane thing to do is to compute y = z+l if z > and y =--

if z < IT This takes a very slight additional effort on the part of the

programmer but it saves the user from having to worry about details of the

logarithm routine.

When designers optimize the speed without consideratioh of error, the

user may- sometimes get wrong results for no apparent reason or he may con-

clude that calculations such as extended summatio6> can't be-erf6rmed. The

user is tempted to prove theorems such as Viten'ko's [see 10] which seem to

be relevant to the hardware but really are not.

Regardless of how the hardware is designed, there ill probably always

be tricks such ,as the cubic equation algorithm [see 17]. However, if we

design the hardware and software properly, it should not be necessary for

ordinary users to get degrees in numerical analysis in order tc find such

tricks to solve their everyday;problems.

Economic Cost of Anomalies

I don't object to the funny things machines do because they are so

wrong that they make life not worth living. We can obviously code around

them if we know about them.

I don't object because they violate mathematical aesthetics.
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But I do object because these little flaws have an economic consequence

out of all proportion to the cost of extirpating them. And the economic

consequences are hard to uncover. -

For example, the man above might have said that wing won't work and

gotten a thesis in something else; or he might not have.

He was lucky, because the numerical calculation did not, in the end,

det ect him from his project.

It- is veiV unlikely that a rounding error in a floating point operation

would cause a bridge to collapse, because people usually don't trust computer

results. They build prototypes and throw in fudge factors.t

I don't -know-of any- co-Ilapses caused by rounding errors, and I'd be

as unlikely to know as the man who did it. How would you find out about it?

I don't know how often people have tried to simulate a difficult idea

and because of-rounding errors, given up on the idea. Probably very often.

I've heard people discussing programs and methods used' that wouldn't give

Vcorrect answers; they wouldn't be off by orders of magnitude, just by factors

1like 1.325. For example, in differential equation solvers where they don't

know what step size touse, they us-ed a fixed size -- which is too big in

one part and too small in another. But these solvers are imbedded in the

program and are never noticed.

ihre is one example of a bridge colldpsing because of small (-not rounding)
errors, the Quebec bridge in Victorian times. The designer neglected the
deflection of the sections under their own weight while the bridge was
being constructed.

r/

The side sections sagged betore the center suspension section was added.
It collapsed.

, The only aircraft I know of that crashed because of a computer program
is the Lockheed Electra. There it was not a rounding error but a mistake
in the organization of appropriate subroutines.
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Then there's a man, say a psychologist, who doesn't understand how

that electronic stuff2 works, who is trying to debug a program, a fairly

simple one of-less than 100 statements. You give him a list of all the

funny littlp things the computer does and he spends hours trying to find

which one causes his bug. Butof course his error was in a format statement.

So you see that the costs I'm enumerating ar, real economic costs. They

are costs to people and to firms. And they have nothing to do with a rounding

error committed in somebody's program, that he may not have anticipater1 ,

It might be that he now has extra things to look for. He has to fight the

machine insteadof getting help from-it.

That's why I'm opposed to what happens on the 6400.

Question: I had worked on-a numerical subroutine for solving differential

equations. People using it would typically choose a step size and then one

10 times smaller to see if that changed the results. But the program kept

blowing up mysteriously. It appeared that when funny things,'happened, they

were really funny. The error propagated in rather impressive ways.

Answer: You're saying that errors will be accompanied by symptoms so

obvious that one could hardly fail to notice them if he was at all conscientious.

In response to the claim, made by the author of a matrix equation solver,,

that anyone's matrix that wasn't solved by his routine was so unlucky that

he'd already been run over by ,a truck, I found a 2'x2 matrix'which, when

put into the iterative solver gave what locked like a correct solution

(all tests were satisfied), but not even the leading digits in that solution

were correct. I don't think people know when an error is committed.

There are times when in treating continuous functions the intermediate

results may be discontinuous. And these discontinuities may be important

and you'd like to be told about them. So you depend on laws of arithmetic
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that may not be honored by your machine. Thee are. Fortran programs that

run on a 7094, 7090, B5500 and GE'645, .but they will not run on a 6600-..and

no one has fowid out why.

,here may be a law of diminishing ,returns in hunting for these funny

errors. If we:-can come 'up with a rationale for dealing with large classes

of these errors and if this thinking isn't too devious or subtle, you'd

hope others would come across that rationale and thereby avoid the ,errors.

The cost of weeding out these errors is negligible compared to the

cost-of the whole machine. You may end up with a machine that is better

than it has to be, but not much better.

I?
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6. EXEC.ION-TIME ERRORS

We., leae the CDC 6400 now-to d&scus, more reasonable methods of dealing

with, occurrences such as eyerflow. We w l refer to the Toronto system

for the 7094 described In tahian's SHARE Secretarial Distribution #159 (1966).

We can distinguish between scheduled and unscheduled errors. A nega-

tive input to a square root routine which makes some provision for negative

inputs is a scheduled error. Such errors are a matter to-be decided between

the user's. program and the square root routine. Anuns chieduled error is one

that occurs when no 'explicit provision has been made for dealing with it.

Divisions by zero inmany- programs are unscheduled. A linear equation solver

,may set a flag 0f the system is too nearly singular. Scheduled errors

happen to users who- check this flag. Unscheduled errors happen to users

who ,don't.

One would like to specify options for errors. In the square root case,

the most useful output'for a negative number might be -vT/F for some

users, Y/7, 0, or job abort for others. Some users want to-know how

the negative input came about. They would like to know the statement

number and Fortran subroutine name where the negative square root was

attempted, and the nest of callying routines, if-any, Others expect an

occasional negatitve from rounding errors, and don't care which small number

is output as long as they aren't kicked off and their output is not blemished

by an error trace. How many options should we offer? We could go to the

extreme of a PLI ON condition. This is generally too expensive. Error

options are pat of the environment in which subroutines -are executed and

would have to be saved and restored on every call and return. For instance,

a user may specify that certain action is to be taken on an overflow, and

later call a quadratic solver. The quadratic solver may generate overflovws
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in intermediate results with which it should not bother the user. But if

the final answer deserves to be overflowed the user-specified action should

occur. Therefore the options 'should be so simple -that the subroutine should

be able to determine what the user has specified and act accordingly.

Suppose then that, in the square root routine, the user may specify

eitter -/T7 for a negative x or be kicked off the system.

If(KICKED(OPF))

Then we should' arrange for kick-off to be less of a disaster than it

conri;.nly is. At Toronto there was the IF(KICKED(OFF)) statement. KICKED

was a subroutine which returned a logi.cal value FALSE. OFF Was a para-

meter which was printed out, on kick-off to identify the kick-off routine

to the user.

During normal execution the action of the KICKED routine was to

maintain a pointer to the conditional part of the last kicked-off statement

executed. The conditional part of the statement was not executed because

KICKED returned a value' FALSE. When an error warranting a kick-off

occurred, buffert +were flushed, normal diagnostics were provided, and

control wai transferred via the pointer to the conditional part of the

statement and a STOP +was written over the next following statement:

Before

3 IF(KICKED(3)) WRITE Save Tapes!

NEXT STATEMENT

'X=SQRT(-3)

After

3 IF(KICKED(3+)) WRITE Save Tapesl

STOP

X=SQRT(-3)
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Then execution could continue until another kick-off occurred, or the

post-kick allovance of, say, '0 seconds and 300 lines-, was. exceeded.. One

could use the conditional part of the statement in any usual way, for

printing ut the values of key variables, issuing operator instructions,

etc. Thus it should be possible to ,save what is necessary to restart a

program that, for instance, had simply run out of time. The KICKED

.-routine cost less execution time than a divide and could therefore be usetd

quite freely. No change to the compiler Was necessary.

What I f They Don't Want to- Kick Off?

With kick-off now less of a disaster, there: remained the choice of the
other options. 1.0/. was treated as an overflow, but i/0, 0.0/0.0, and

0/0 were always a kick-off. More elaborate options existed foe overflow.

The default silent option was to set the result to the number of the same

sign largest in magnitude. A system flag, would be set which could be turned

off by testing. If no test occurred the system would print

LAST UNREQUITED OVERFLOW WAS (location),

at the end of the job. A similar message was available for underflow. A

logical extension to this system would be to include a message

FIRST UNREQUITED OVERFLOW-WAS ...

The cost of the system is negligible.

In the ,rintig, mode the same events occurred and, in addition, every

overflow or underflow generated an immediate message with details as to

cause and location. The user could also arrange for automatically switching

to silent mode after printing a certain number of messages.
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[ Undrflow, on the 7094 was complicated by ispurious" underflows. The

accumulator AC and- its4Xtension NQ both had dharacteristics, and MQ,

could undorflow. It woul-d be re isonabie to set 4Q to zero only when soft-

ware double precision was- being done, which was a holdover from the 7090

made obsolete by the double prec-ision hardware on the 7094. Consequenrtly

a warning-was issued not to use software double precision and MQ underflows

were ignored.

r AC MQ

Another possibility of underflow was in the remainder following a single

precision divide. There was, however, no way to use the remainder in Fortran.

In other code the P and Q bits of AC could be thought of as a leftward

extension of the characteristic of AC. Consequently this underflow was

also ignored.

Most people don't Want to be botheradwith underflow messages and are

satisfied to set the number to zero and cofrtinue. Rather than do- something

wrong vithout recording the fact, the unnormalized mode of treating under;

flow was developed. Unnoimalized numbers have the smallest possible dharac-

teristic and unnormaliied integer parts. Underflowed numbers are treated

as unnormalized when possible, so that there is quite a range of very small

numbers with gradually fewer significant digqits. The assumptIon is that if

it is all right to havc underflows set to zero, then it is just as good to

set them to small numbers. In the unnormalized mode no UNREQUITED UNDERFLOW

message is produced. However, the unormalized numbers were quite persistent:

and, if the user attempted to divid6 by one of them, he would usually get

kicked off. The existence of unnormalized numbers at the end of the
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calculation was a signal to the uter that he had not been correct in assuming

that 'his undeiflows could be safely set to zero.

An application of this technique was in computing scalar products a bi.

By doing: the multiplication and addition with underflois trOatdi hn unnor-

-malized' mode the accuracy of the result could be easily ascertained by dheck-

ing if it was nonralized. If so, it is as- accurate as it deserves to :be;

if not, it had underflowed, but the test need be made only once, at the end

of the loop.

The effect of unnormalized mode was to soften the impact of undeiflow.

The calculation discussed previously which yields about 3 on the 6400 would

yield nearly the correct result of I on the 7094 in unnonnalized mode,, and

the answer would probably have 'been urnnormalized as a warning.

There are some calculations in which overflows occur ihievitably,, as

in symbolic evaluation of large determinants. Counting mode was invented

to allow a limited range of these computations. The user would designate

a cell for counting overflows. Then every time certain operations occurred,

that cell would be incremented if overflow occurred, and decremented if

(a.+b.)
underflow occurred. For instance, to compute (+ the denominator

would be computed, and the cell incremented each time an overflow occurred

on an add or multiply. The cell would be reversed In sign and the numerator

computed. At the end of the calculation the counting cell would indicate

the power of 2256 which should be applied to the number actually in storage.

With no testing in inner "loops, this technique costs the user only if an

overflow actually occurs. Most of the computations in counting mode never

actually overflowed or underflowed, but the counting mode made it possible

r to allow for the possibility in a rational manner without jeopardizing the

entire calculation.
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The 7094 kardit-0 facil'itated -a reasonable treatment by. initerrupting

before information was lost. The correct resylt could always be inferred

because the extra informati-on was always preserved. in the l eft bi ts. Further,

the overflow/underfiow interrupt had priority over all others,,, so that -this

infonnatlon was not'lost. Because the system wasp written with a, fl1exi bl e

set of options, no users, ever fouhd it necessary to supply their own overflow/

u-ndarfiow. hP.dling routines.
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7. A PROOF OF A NUMERICAL PROGRAM
In a previous lecture [1] we described, an algorithm for solving the

quadratic equation ax2 - 2bx+ c. Today we shall write a program for suchLn algorithm a~d-see what can be proved about the output of the program.

We will assume that every arithmetic operation, including square root, it

computed correctly and .then chopped or rounded with at most an error of one

unit in the last place, although slightly weaker assumptions would suffice.

For our purposes today we shall ignore overflow and underflow.

Recall our algorithm:

d - b2 -ac
f' (4>)b + s igh(d,b),

0) XaIG -  a

SItJT = axBIG
if (d <0) _=ba -+ i

a a

We code it as follows:

P = B**2-A*C

IF (D.LE.O.O) GO TO I

C real distinct roots RP, RM

S = B+ SIGN(SQRT(D),B)

RP = S/A
RM = C/S

GO TO

C compitex or coincident RR ± /:TRI
l RR = B/A

RI = SQRT(,-D)/A

For analysis purpose we introduce Greek letters after each operation.

Each Greek tetter iTs bounded by the maximum relative error due to chopping

or rounding. In the example of four digit arithmetic the bound would be

1000- 1000.5100 =5×l "
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Lower-case Latin letters represent values stored in cells with corresponding

upper-case names.

d :(b2(l+Pl-ac(l+12))(l+)

CDC arithmetic does not fit this mold. VWe would have to write

d - (b2(l+1 l)(+1  ) -ac(l+112)(l" 2)) but this does not affect the present

analysis.

d > 0 real root

s = (Jbj +(i+p)ra)(l+a)*sgn(b)
r+ = (1+6)s/a

r (l+62)c/s

d < 0 complex or coincident

rR ("l+63)b/a

Let us investigate how these errors affect the results. Suppose N is

24a large integer, say 2 +1 on the 6400. Then try to solve the equation

(N+I)X 2 2Nx + (N-l) 0

N-lT

whose roots are 1' and N-l7. Suppose we make no other rounditig errors than

the following:

22
b2 = N (1+111)

ac (N2-1)(l+P 2)

In this case it would be quite possible to obtain b2 and ac rounded

to the same value, N = 248+ 225 +1 , and N -1 = 2 + 225 N2 would

probably be rounded to N2-1, with an admittedly small error. However, now

d 0 and if ro other errors are made the computed roots equal,
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N -1 _ -2 4. These "roots" are equidistant fr the precise
N+l N*1eudstn rmth rcs
roots l and 1- 2-2-24_ These computed roots differ from the true roots

-by about :'24 units in the last place! Clearly we can't make. the claim

that our program delivers the roots 'of the given quadratic correct to

within a few units in the last place.

Now let us see what equat4on we did compute the roots of. This is

(N+l'2 2Nx + (N2

We see that the relative difference in the coefficient c is +

N -r That is,, the couted foots- were the correct roots -of, an equation-whose

[ coefficients differ from the original ones ,by less than one unit in the

last place. unfortunately., this statement also is-not true for our program

in general.,

,Consider any equation such .as

x? - 2.I"5x - 1 =0 .

On any normal machine we compute, the roots to be ±1, because 10O0+ 1 T 1.

These are the correct roots of the equation x2 - 1 = 0. iClearly the coeffi-

cient b of this latter equation differs by a substantial relatiive amount

from 1u .

Fortunately, we can say something definite. The roots given by our

program differ bya few units in the last place from the true roots, of a

quadratic whose coefficients differ from those input by at most a few units

in the last place. Let a, b, c represent the original coefficients and

r. the roots delivered by the program. Then there are r. which are the

precise roots. nf a quadratic with coefficients L , E, and in each case

the perturbation is a few unit& in the last ploce. In a picture:
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(input) (truroc

coefficients of r. (6pt
equation with
roots r_

Note th-at, in general, the choice of the intermediate quadratic is

not unique.

Let us analyze in detail 'the simple case a a, b = b, and
(T,)c. Then if' d<O, r+ = r R r I , r = ( +

± R R 3R'

ri 11l6YiP~'li~{+2 )r,. Now when d > 0, defineL = (5 -s )/( FGIJ +v -I - 1

-p/( ) (iTo'T + (pl++~I)/(l +/+)'(l+7))

1 1+"4 IV + T/'
S(P+ +  ~ + + 'I

Thus e is of the order of a few units in the last place. With this

definition

r+ (+)(+)(+6 , r2)(+)/(( )(+)(+2))

That is, if we follow through the algorithm we do find roots that differ

from the correct roots of the altered input by a few units in the last place.
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We now know that the roots are approximately those of an altered

quadratic. But how close are they to the roots of the original quadratic?

Clearly it's the change in c that can make our results bad*

Let us now lok at the problem from the point of view of ,perturbation

analysis. How much could the roots possibly be expected to vary if we vary

the input coefficient c? In particilar, compare the equations

X2 -2bx+c with roots R+ ,

x2 
- ?bx + c(l ) with roots 'i+

Theorem. (]I -( -v7_T (_/r- *  7 )

For small y, the relative-differece is about- 7T at worst.

Proof. Let 6+ 1l - Then F+

Using the-facts +r = 2b = R+R, r+r = c(l+y), and R+R = c,

we deduce that R+6++-R _ 0 and (I- +(1-6) 1 +-y. Let z- R +

Without loss of generality let IR.( < R+I so jzi 1. Then

6+4 = J-z6_ < 16_. so we only concern ourselves with ,. 'It satisfies

(l+z6)(l-6) 1+y

or z62 -(z-l)6 +y= 0

The two rbots for 6. correspond to the roots r_; we take that

corresponding to the root 6 smaller in magnitude.

Our problem may now be ttated as follows:

Given [yj > 0, lz, < 1, 12 < iy determine maxj6(z,t)j1 where

6(z,T) is the smaller ;.,ot of

za2 - (z-1)6 + T 0 . (*)
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6(Z,T) is a h~lomorphic function of z except for those critical values

where both roots of (*) are equal in magnitude. The critical values are

those satisfying

2--. " _4zT"2 I > 0

(zl)2 1>

These z lie on a curved arc C t'-aced by

Since 2+ =-,part of t must 'Tie. in the-disk IzI <1. Define D to
be the domain obtained from the disk by cutting along C. Here are some

examples.

X=O C
X=O X=O C X=0 =O

DD
X= D D

C is the arc. T2 < -1 C is the fallen questionmark

C is the circumference-plus the line segment

Generally, either {z: ,zJ = U} C C or C intersects the circumference

IzI = 1 in just one point, at z = 1, X

Certainly S(z,T) is a holomorphi-c function of z inside D cand

continuous as z approaches the boundary of D. Therefore the maximum

modulus theorem applies (Titchmarsh, Theory of Functions, pp. 166-168) so

that the maximum of 16i on D or on izJ < I occurs on the boundary of D.
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If-the maximum is achieved when jzj = I then 1512 < fT-i2 with

22
_ equality when 4 1. . If achieved on. C. inside jzj <: 1.18'

because the product of the roots is L. Hence 161 2 < IT X
C

'But on C,

TI : -(l+A +T ) 2 2  - (Itl+A A+'+2)2 = S

where -- t

12 2_,

so 161 < Jyj(/TY-+Vi+jIy with equal-ity when y 0 and

z (=V + 4 -2) (Then +SO the perturbation of y is bounded

b:Y

-61 VT-7(VT T E.

This bound i-s :certainly the best possible, independent of the data,

and it is achieved when the roots are nearly equal. In this case the

discriminant is very small and inaccurate because cancellation has revealed

previous rounding errors. We. could get a much better bound in many cases

through a more detailed analysis of the bound as a function of the coeffi-

cients a, b, c. To be useful we would have to incorporate a possibly lengthy

computation of the bound into the quadratic routine. The user pould then

call upon this part of the routine if he wanted to know how good his roots

a re- f;ortnately, as we shall see, there is a programming trick which we

can exploit in this particular problem so that the user need not perform an

error analysis, and we need not compute a complicated bound, because we

will be able to show that an acceptable fixed bound now applies.
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Analysis of Round-off for the .uidratic Equation Solver

We have seen a program to solve the quadratic equation that is good, in

the sense of delivering very nearly the correct answer to a problem that is

very nearly that which we wished to solve; e -.have also seen 1that in the

worst case a small relatiye perturbation y in the coefficient c can

cause a much, larger rel ative.- perturbation /j7[ in the roots. How can we

get rid of this complication? The one critical ,computation is that of the

discriminant:

d = (b2 (l+l) -ac(l+i 2))(1!+a).

The relative precisior of the entire calculation can be as bad as the rela-

tive precision of the discriminant. When b! ac we can't, in general,

write

d = (b2-ac)(l+S)

for small 6. What happens if we have double precision available? The

product of singqle ,precision numbers is precisely representable in double

precision. Further, if the-double precision subtract rounds after normali-

zation, then p, = p2 = 0. Then we can write a program that wi'll deliver

nearly the roots of the given equation! However, along the way certain

difficulties arise. For instance, we might try

DOUBLE PRECISION DD
DD = B*B

D DD-A*C

We would hope then that DD would be a double precision number holding the

product b 2 precisely, and D would be the double pcislon difference

I'(



rounded to single precision. For early IBM Fortran implementAtions this

was a¢tually done. The compilers checked the context before discarding

the second half of the doubly'precise product of single precision numbers.

More recently the previous code would be compiled so that the second half

of the doubly precise product is di-scarded without checking the context first.

This procedure is now built into the sntax of the language. One way of

'dealing with such compilers is to write

DD= DBLE(B)**2
D = DD- DBLE(A)*DBLE(C)-

Now the progrfm appends zeros to A, B, and C, and then does full double-

precision multiplication to yield double precision products. Most of this

work is not necessary for our purpose and in fact consumes a great deal of

time: with software double precision, the cost of the three double precision

operations will far outweigh all the other operations, in the program, except

the square root. A similar waste becomes criti-ca1-i n, for instance, scalar

products of vectors.. If single precision is used the error in the sum
N-

x.y.(l+ .) will;be such that the computed sum will be the product of

vectors, One of which may have perturbatitns as large as 'N units in the

last place of each element. If we do double adds on the double products
N

we would get X .O+d)" The result then wouldbe the product of

vectors perturbed by N units in the double pyecision last place, which is

ignorable. Consider the following results on inverting a lOOx 100 matrix

on a 7094 with hardware double precision:
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Arithmetic Time Backward Error Bound

Single Precision 7.5 soconds 10 units in last place
- per element

Double Precision only for accu- 11 2 ulps
mulation of scalar prbducts

Doubie Precision Throughout 15 800 units in last place
of Jdoiyie preds-ion

Note that using double precision throughout requires twice the storage space

for the matrix, a matter of 10,000 cells on a 32K machine in this example.

On the 360 the hardware is available but is not useable in Fortran. 360 short

word arithmetic only carries six hexadecimal digits. Loss of 100 units in

the last place means losing 2 of the ,6 figures of accuracy. We would 'l-ike

to use short word arithmetic to conserve storage, but a mistaken principle

in the compiler forces us to use double precision to get good single preci-

sion results.

Ideally the compiler should never lose information before consulting

the context. We-would like to have some means of specification such as

D = DSI'C(B*R) - DSIC(A*C)

which means: treat the partial results as double precision until the assign-

ment to D is made, when type conversion to single must occur. It doesn't

matter so much which default rules the compiler may follow, as long as there,

is at least an option to do what we want. Explicit type conversions are

done in many other contexts, why not this o.C?

We are almost to the Voint of writing

d (b2-ac)(l+6)

when a new problem is discovered. Most machines don't carry a guard digit
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for double precision subtraction. The dduble precision instruction in the

7094 and CDC machines does- not give the desi-red result ,but returns us to

the situation

2
d, (b (l-Ii) --ac(l+j 2))(l+0)

At least u, and V2 are now a few units in double precision. This means

that VT is a few units in single precision. We are now able to announce,

perhaps, that our roots are correct to a few units in the last place (ulps).

When we make such an announcement it will be interpreted as meaning

that -the results are real if the roots are real, and -complex if the roots

are complex, and that -each number printed is correct to within a few ulps.

Recall, however, that our perturbation analysis was concerned only with the-

magSnitude of complex numbers.. Nothing was said about the real and complex

components. Indeed, there is no way of showing, using our usual error

analysis based on-bounds on pi and )2' that the complex part will be
computed correctly to a few ulps, or even that the discriminant will not

change signs due to errors.

Yet our program wil run correctly on nearly every reasonablemachine.

The only way to Understano this is by a rather devious line of reasoning.

First we shall show that real -roots will be computed essentially correctly.

Real Parts Remain Real

Suppose then that b2 = ac. Then b2 -ac 0 because the subtraction

should be performed precisely. Now suppose that b > ac. Since we expect

the arithmetic unit in a reasonable machine to be monotonic, we will find

that computed (b 2-ac) > computed (ac-ac) = 0. On such a machine there

is, therefore, no possibility that a pair of real roots will be represented

Il
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as co nsid Frter, getrelative error in b2:_n occurs only when this

NoWconide copleroots, b < ac. By monotonicity again, computed,

b _- <0. Tefo-tereal part will always be compu ted independent

r6 h icimnn nml be .conputable issentially correctly.

Accuracy -of Complex Parts

It is still. unclear whether the, complex, ports are correct to a few.- ulps.

Suppose b2 < ac -but they have the same characteristic. Then the subtractiun

is performed precisely, and tne complex part is OK. The worst situation

is-when b 2 <,ac ,but computed (b 2-ac') = , for then the complex part basIvanished with great relative error. this situAtion would have to occur in

a shift. Consider a right shift ~of one.

ac: 2m X Lj OO ci 4

b2  2m-lx ll...11

b 2  can not be all1 ones. Remember, it was frmed from a single precision

number. A-long string of ones is just less-than a power of two. One way

of getting it would be to square a number just less 'Chan a power of two,

b = l.l. Then we would have:

2f~333f PT 1 shi fted off

iic-b 2  i3O

The difference would not become zero, barring underfiow, and in fact would

[Abe rather accurate. The other possibility is that b is just less than
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the square roots of an odd power of two. Now a nber just greater than

/1-2- Would produce a square containing a power of two plus. some other

things. A number just less than A/12 would square to a number containing

one less significant bit than the first, and would therefore be left shifted

one bit in normalization, causing 4. zero to be inserted on the, right. In

the subtraCtion ac-b 2 the right shi-ft would simply shift out a zero, so

no information would be lost and the difference would be correct. Conse-

quently We can conclude that if b2  ac then the difference will be com-

puted correctly to single precision,, even without a guard digit. There are

Ccertain machines in which double piecision is done in software. These

machines sometimes lose two digits instead of one in the right shift, and

the previous analysis may not be valid.

The peculiar analyses are necessary since one might be-disinclined to

believe that a quadratic solver could give the imaginary part of complex

roots correct to a few ulps, based on a certain model of arithmetic. This

model is not categorical, so in particular places we must invent special

analyses to-,understand what is happening. We shall see in the next lecture

that loopholes in our rules about rounding will allow us to perform calcu-I lations that are otherwise provably impossible. The reason poorly designed

zirithmetic i's bad is not that the error is slightly larger, but that it is

so often uncertain, in the sense that we must ei-ther expend substantial

energy in detailed investigations of the type we did here or in tedious

,rograrning around the unce6rtai'nties, which increases the likelihood of an

error and consequent cost of tha final program.
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8. MODIFYING THE QUADRATIC EQUATION SOLVER

TO AVOID UNNECESSARY OVERFLOW, AND UNDERFLOW

Now. we will discuss 'how to cope with over/underflow, in solving the

quadratic equation

Ax2 - 2Bx + C 0 -

The flow chart will not indicate where double precision is needed for the

accuracy we want, as that aspect of the problem has been covered already.

The object here is to write relatively simple code to-handle over/

underflow, for most machines. Some choices indicated in the flow chart

will 'have to be discussed with care, to see if choices can be made that

follow the desired restraints., For example, can an appropriate scale factor

S be found so that A/S and C/S will never overflow or underflow?

Can overflow and underflow at intermediate steps be handled adequately?

On the CDC to suppress abortion upon using an infini-te operand requires a

control card. You cannot revert to the normal mode at some later stage in

the computation. If you operate in the, normal mode, then you could not take

advantage of someone's program that handled over/underflow-so nicely that

you could almost imagine that it hadn't happened. In thi's quadratic solver,

the writE, might allow the program to handle overflow: but a user may want

to be kicked off when that happens. Then you'd have to be careful never

to use quantities which may have been set to infinity or indefinite; you'd

'have to do a large number of tests. Not all the tests will be indicated

on the flow chart, but you'll be able to see where they should go.
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Flow'Chart: to solve Ax 2 -2Bx+C, 0

0 0 

Special 
cases

Scale~ actor S z kACI

udr o/underf low. over

A' =A/S

C, = C/S S must be chosen so that
neither A' nor C' can

B' =I overflow or underflow

D (B')2 _ A'C'

Real'Roots

overflow YsRI =(o..5*C)/B

R2 = 2(8/A)

F =B' +SIGN(VW,8')

comiplex or coincident root
R = B/A

r ~ ~~~R____ __
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Special Cases A= 0 or C 0

There is a difficult question in what is meant by A = 0 on the CDC.

A might be one of those tiny numbers that looks like zeo to the Wl-tiply/

divide-.box 'but not to the add box. When you decide 'is A = ', you',re

'bound to disappoint soMebody. You have to adopt a convention.and stick 'to it.

Question: Wouldn't you-look at the program and see, if you were going

to use A in rmltiplications or additions, to make your decision?

Answer. Yes, that is one rationale. But remember that that is of

almost no consequence to the man who will Use your program to solve a

quadratic and who doesn't ca e how it is done. A coefficient that it zero

to you may very well not be zero to him..

My feeling now is that numbers that the multiply unit considers zero

should be set to zero. So instead of writing IF(A .AQ. 0), I would write

IF(.i.O*A .EQ. 0).

Scale Factor S

Having ascertained that neither A nor C is zero to the multiply unit,.

we can compute S. We will see later what value K must have, but for now

simply note that, S is roughly the geometric mean of JACI. The actual'

value chosen for S requires care. In the attempt to evaluate S, over/

underflow may occur, but that actually is not serious. The object is to

scale the whole equation by dividing through by S in order to insure that

the new A*C is a modest number close enough to I so that if the new (B)2

2overflows, we know that AC is negligible compared to B . On our machine,

AC could be -lO- 50 and that would be close enough.

tIt is a desigr flaw of the CDC that the multiply unit will allow you to
generate a number with a zero characteristic and non-zero integer part (by
successive divisions by 2), but then the unit will not accept that number
as an operand.



8-4

An over/underfiow may occur when computing S (to detect that requires

tests on intermediate products). The final result for. S nist be a Ypier

of 2 so that dividing by S will not introduce round-off errors.

Over/Underflow inS '

If we get 3n overflow, that means lACI is a huge number and S could

' be taken as any big power of 2-, say 2600. Overflow means that both A

F and .C are greater than 1; when we compute A/S and C/S, neither of

thes-e can underflow. A' and C1- may still be -large, but their product

cannot overflow.t It mujst be far enough below the overflow threshhold that

if (B')2 overflows, 'C' is negligible. (Actually, (B')2  could not
overflow after such, a huge scaling).

Question: It's not cleat to me that a single S will do.

Answer: There is no single S. If S overflows or underflows, you

don't choose S according to the formula.

Question: I meant a single S in any one situation.

Answer: That can be done. I'll indicate how to do it and leave the

details to the students.

An underflow in computing S 'indicates AiC is very tiny. That means

A and C are both less than, z It is now enough to make S a small

number like 2-500. Then computing A/S and C/S will cause no serious

problems. Computing B/S may overflow now, but that will be tested for

further on in the program. If B' overflows, B'2 will also and that will

be caught later (if you are running in the mode that allows you to use

infinite operands).rConsider A = 
2
I022+8 C 21022+48 AC 22044+96 overflow.

If S = 2600, A' 242Z+48, C' 2422+48, A' = 284496 in range.



Overflow in .B'-= B/S '

If B' overflows, then (B') 2  is so much larger than, *AVC that we

can neglepto A'C' compared with B .- The roots theh are relatively simple

to compute:

'I 2B
-R ' R2 - •

What If (B') 2 Overflows?

tUsing-double precision to compute 0 = (B') 2 -A'' can lead to one

problem.

You have computed B' and checked that it did not overflow. So you

,go into double precision to compute D and then check if it overflows.

However, if .(B')2 overflows, youwill get kicked off. B' is now

double precision. When you multiply the two upper halves of 9' you generate

an infiniteoperand. Then when you compute an (upper half)*(lower half) and

-try to add to the upper product, you pick up an infinite operand and get

thrown off.

Solution: You must compute (B')2 to single precision first and

check for overflow. If it overflows, you know D wil. If (B')2 doesn't,

D will hot ovel-Flow either. Uhfortunately,.you,,will often compute (B')2

to single precision and then to double precision as well. Or else you ru6-

in the mode that allows infinite operands,

Question: What if. (B')2 -A'C' overflows but (B")2  doesn't?

Answer: It will not happen that (B')2  is so oiese to overflowing that

adding a reasonable number -A'C' will push it over. There will be bounds

on A'C' to insure this.



2-1024+47+96 < 1A'0'I < 2l022+48-96 -

If AC' < 21022+48 "96, I cannot add it to a representable number and

causeoverflow. Idon'twant (B')2  to underfowand still be significant,

so -set the lower bound-on IA'C'I to 2-1024+47+96.

The approximation when' S over/underflows is crude because we cannot

tell if AC overflowed by a little or a lot. A'C' cotId -be -2900, but

that is still in the acceptable range. If (B')2  overflowed, A'C' can

be thrown away without any more than a rounding error in double precis-ion.,

Then the approximations Rl and R2 are correct to single precisi on.

There could be a problem in Rl = FC/B, if B is huge an d C is tiny.

It is important to form the product C first and then divide by, B If

B is so large that underflow occurs,, the root deserves to underflow. o/ivide,

C by 2. Then if underflow would have occurred in dividing C by B,, it

will occur in dividing C by B., You find out if C/B -underfiowed by

testing if it is zero.

In computing R2, 8/A cannot underflow, so you won't get a zero here.

If B/A overflows, you may be kicked off the machine when you compute

Z(B/A); you have to be careful. You cannot use the prioed values to compute

R2 because B' may have overflowed.

Computing S

I have to choose K (see flow chart) in such a way that if fAC is

in range, the intrusion of the scale factor will not cause difficulties. In

getting to the point where D didn't overflow, I must be sure that A'C'

1l022-;,48 -overflow threshhold = 0

underflow threshhold 2"1024+47 (smallest normalized operand for add box)
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could not have overflowed or underflowed.

the problem is to pet IA'C'1 into the range

2 < IA'C'I < 210 22+4 "96

Suppose

A = 21022+48(1 - 2-47) largest operand

C = " '' 4  smallest operand
(2-1024+47 is zero. to multiply :boxy)

In this extreme case, I dare not divide A by a number less than 1, nor

divide C by a number greater than 1. Hence S must be 1 here. This

puts a condition on K.

AC 2 96-2A .2 to withina, unit in the last .place

2-KAc 296-2-K

Now I'll take thesquare root and do something to, it and I"d better get 1.

I. want a number bigger than 1 (=,20), so that when I take its SQRT

and throw digits away, it will be 1. I don't want a number bigger than 2

after taking the square root, so the original number must be less than 4,

or less than 22. In exponents of 2:

0 < 96-2-K< 2

So we have 96-2-K = 1

or K = 93

That's the only value of K that will work on the CDC.

Question: You pulled the numbers A and C out of the machine and

got one particular value for K.
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Answer. i t1.-F one case is tc work properly, K must be 93. NoW

the question is, will that value work for all other numbers?

Does K= 93 Work For All Other Numbers?
The approximation for S means I compute 2-KACI, take its square

root and truncate it down to the next lower power of 2; that is, throw

away the last 47 bits of the word. That is 2 . We have just verified that
if A and C are at opposite extremes of the range, S = 1.

Question: You're making some assumptions about the SQRT routine,
that for numbers near 1 you don't end up too far down.

Answer: Let's see what's happening. A = 21022+48(1-247),

-1024+48C 2

2-9 31AC1 = 296-2-93(1-2 - 47)

AT(i-2"4)(le) -,/V 1.4

It is hard to see how any machine could be so far wrong on VT that when

you chop you get a number other than 1.

Now it is necessary to see that nothing goes wrong when A and C move

from these extreme values. Let iR - 21022+47. It has the same characteristic

cs beforetbut is now a string of O's instead of l's after the high order I.

Then AC is reduced and the initial approximation of S is reduced. ABlt

S itself must not be reduced; if S < 1, A/S will overflow.

2-93 ACI = 295-2-93 = 20 = 1 exactly.

When I take vT and throw away digits, nothing bad will happen. By mono-

tonicity, as long as 21122+ 47 < A < 21022+48(1-2-47), nothing goes wrong,.
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We have to do the same check for C, in its appropriate interval. As

C -increases, S cannot decrease, but we cannot allow S to increase such

as to make C/S underflow. An argument similar to that for A wi ll do.

Ttk cases for A and C not at the extremes work out more easily.

"he point of this odd argument is that by an artful choice of constants,

Wiich have to be verified for each machine individually, you can manage to

have relatively few tests, for over/underflow. We've discussed most .o the

tests except for the last ones to see if the roots over/underflowed.

Test For Sign of Do D < 0

You have complex or coincident roots and compute them in the- obvious

way.

RR= B/A ;or B'-/A,'

If B/A over/underflows, you deserve it.

Ri =V--D/A'

is repiesentable without over/underflow, so the same is true Of vCIY,

unless D is one of those numbers that is zero to the multiply box. Then

the result depends on the SQRT routine. But that cannot happen since

AC' has been scaled to be nowhere near the underflow threshhold. Even

-cancellation from (B')2  cannot take you near enough to the threshhold to

bother the SQRT. You could get exact cancellation, but that is alright.

Notice that if you had some decent way of turning off the spurious

over/underflow responses, you could run in that mode until the test on D

had been made. Then you could restore the mode wanted by the user before

computing the actual roots and if he wanted to be kicked off he would be.

"I. , m l i,
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The only over/underflows that occur now are those that deserve to happen

because the roots over/underflow.

D>O

The rotts are real and distinct.

first you have to compute

F = B' + SIGN(SQRT(D),B')

@2

Observe that -F cannot overflow or underflow. We know (B')2  didn't

overflow. Therefore 2B' cannot (47 B'), or B'+-/A'C' cannot

v'Vl-, remember the range for IA'C' [').

Now we compute the roots and they could-over/underflow.

Rl = F/A'

R2 = C'/F

If either of these over/underflows, it deserves to.

-About the Program

Observe that this program has a relatively siviple flow chart, in that

the tests are to some extent minimal. It is also getting close to being

machine independent. It is my assertion that the scaling trick can be

carried out on ,any machine that I know about. It would be possible to

design a rachine so that this trick would not work, because the numbers are

representea in some pecullar way.

Once the scale factor has been chosen, there is nothing to indicate

if the machine is binary or hexadecimal.
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Another property of the program is that we haven't spent much-more time

than the minimum to solve a quadratic. The minimum is our 'program after

the scaling has been done. We haven't more than doubled the minimwo amount

of time. .

What About Automatic Theore -roving?

Question: Some 'people at Stanford try to prove validity of programs

by-putting balldons around decisions. In proving the validity of your SQRT

you took an analytic approach. But in this quadratic solver with its tests

Sand decisisfh., you were reduced to lookihg at cases. Balloons wouldn't help,-

Is there some: theory that says when yOu've exhausted the cases?

Answer: The approhes used by the people at StanfoMd to prove validity

make- techniqries which reduce In the enrd to an examination of cases. seem

abstract and impressive. There is no systematic way I know of to minimize

the number of cases. In general, it is better to break the cases up in any

way that makes sense to you, even if the nt,mber is then, larger than necessary

and tackle them. You'l find that arguments used in one case will work for

another; maybe those two cases should have been one, but separating; them

won't have cost you very much.
The difficulty in their approach arises when you try to prove anything

about a machine like ours which is capricious. If the program was reasonably

simple and the number of rules was Peasonably small, their formalization

would appear to be quite successful. What I have done on the quadratic is

essentially what they would do, stripped of abstractions. It is possible

to write down comments that enable you, at any point, to tell what the state

of the machine is, subject to certain parameters, The parameters depend on

the data, Every time you pass through a decision you can give the new
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parameters in terms of the old. You. could. verify that certain relations

remain satisfied by those parameters. But there is no systematic way to

generate those relations, which depend on your objective. The men at

Stanford have yet to prove the validity of any program half as complAcated

as the quadratic solver.

Question: Their problems are typically logical ones, like sorts.

They don't come into contact with the machine.

Answer: They use induction. They do not have inequalities, for

which in -critical cases. you have- to-examine a finite- number- of integer

variables and let them run through their values. That is not because their

method is incapable of doing so. It can if you tell it to but that is where

the work is and it is not part of their scheme.

-Working out what to do with a prcof involves cleverness in deciding

which statements to test for validity, not in doing the -actual technical

manipulations which go into proving the validfty of statements you;,ve decided

to test. The best I would expect from mtechanical program verifiers would be

that if you could reduce the verification of a program to a set of verifi-

cations of formal statements, which only required a certain amount of

exhaustion of cases generated in a routine way which you'd- rather -not do

yourself, then you'd let the machine d it.

The example of the 29 incorrect [T] square roots was a time when I

had the machiwe do some verification. But deciding what routine to use

required ingenuity. i don't think you can escape that for non-trivial

programs. I think all you'd usually get from theorem proving was really

just proof checking,. But proof checking could be tedious and you may have
tit

trouble explaining to the machine that certain things are true (likeI _._ properties of continuous functions).
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The point is not that the machine cannot know everything. Rather, it

is that in my attempt to explain to the machine what I know, I may be building

in a mlsconceptior, without realizing it.

Exunple. Find the maximum value of a continuous function on a closed

interval. Everybody knows that the 'function achieves its maximum. But U

there is no algorithm which when given the program that generates the function

and. the endpoints of the interval can guarantee the maximum to an arbitrary

preassigned precision. If such a program existed, it could solve mathematical

problems like 'Femat's last theorm, or the Riemann hypothesis. So what-do

we mean when we write down MAX(f(x),a,b? Wb e aren't sure we should write

that down perfectly freely. But we do It anyway. There could be a mistake

in our-concept of a maximum which we may infuse into a proof, which was

intended to be constructive. By introducing this non-cOnstructive idea We

iay have clobbered the proof without realizing it.

The p oof checker has then checked the validity of a certain argument

following from certain assumptions without really proving he theorem, I'm

afraid people will assume that anything checked by a proof checker is true.

It is only true if the assumptions were , but they could be true in a non-

constructive sense ,and not true in a constructiVe sense.

I
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9. HOW CAN WE ADO UP A LONGCSTRING OF NUMBERS? - STANDARD ALGOR,TP

Today we ,shall demonstrate the difficulties thpt afise frOntpoor 
design

of floating point hardware when. we try to- add up a sequence-of 
numbers. This

simple problem has been chosen bet-ause the analysis is, relatively 
simple.

ii We, shall see that the analysis becomes more difficult as.,,we weaken our

demands on the arithmetic unit. "I,

The usual program for evaluating l1Xj would be
1

-DO 1 J=I,N

SS S+X(J)

The final result of this program is

sn -( ..((-Xl +X 2) (I+a2)+x 3) ( I+cr3 )+.+x •--+nl ), +crn- l )+xn) ('+an)

We could also write

n
sn= I x(l+ .) ,. l+4. = (l+0j)(1+aj+1 )"'.(l+q) )  a, 0

If we assume c sj < e then we find that

i 31S <. +e - - l

Thus our computed value is actually the sum of slightly altered 
numbers.

The alteration is at most a few. units in the last p'ace times the number of

summands. This dods not seem intolerable, at least for small values 
of n.

Let us see what happens when we try to solve an ordinary 
differential

equation by summing this way. A typical problem would be

dy = f(2ty)dt

m



which we would try to solve by -an algorithm such as

y(t) given

Y(tnl) Y(tn ) + F(tnY(tn))(tn+l-tn)

If we take smal:l steps, we will sum many-small increments. Most of the

increments might be much smaller than y(to), the given initial value.
#0

We could have the situation

y(t ) XXXXXX.

Ay(t o0) = X .XXXX

y(tl1 ) = XXXXXX./u//

The digits to the right of the decimal point are lost in rounding. One way

of looking at this. digit loss is as a perturbation of y(t ). That is, the

rounded result y.(t l) is the .correct result of addition of Ay(t ) to a
0

slightly smaller y(t ). This perturbation is in the seventh place of y(tO )

and thus is fairly negligible, since it is, after al'l, less than the

uncertainty in y(to) caused by rounding to six figures, Unfortunately,

* if there are a million steps in the computation, transferring each rounding

error to the initial value might well change it beyond recognition,. Then

we would have the right answer -- to a completely wrong problem.

There is a more fruitful way of looking at the cbmput'tion. That is

to imagine that instead of emputing F, an average of f, at each. step

we are actually computing atfother function that yields XX.O instead of

XX.XXXX so that the addition is always performed correctly. So we get

the correct result for a problem with a somewhat different function which

agrees with f only to about two figures.
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Ue 'Double Precision

In general we would l4ke to solve & problem closer to the given one.

There are several, tricks which we can employ to do this. Suppose, for

instance, that we only do-a double precision add at each sep:

y(t o ) = XXXXXX.00000

Ay(t) XX.XXXXoo

If double precision hardware is available the extra cost of this, i's 'small.

We can see that as long as Ay(to) affects the last (single-precision)

place of y(t), then none of -Ay(to) will be lost in the addition and the

sum will remain accurate. Generally, as long as 4y is large enough to

alter the last single pteision place of y, any error introduced by-summa-

tion will be small and the sum will be nearly accurate in singlp precision.

We could trace this small error introduced by summation back to being a

single-precision perturbation in the integrated functions. (The worst that

could happen would be that the steps would be so small that Ay woul'd not

affect the left half of y, but this could not happen often or else the

numerical process would be regarded as impractically slow.)

The value of this technique is that the bound on IjI is changed from

21proportional to e to proportional to e2. Then we can sum as many as

'terms before worrying about rounding error showing up in- our single precision

result. As a concrete example, consider a million steps on the 360. Short

word arithmetic has six hexadecimal digits, so the perturbation on the input

data could be as large as 1. Long word arithmetic carries fourteen hexa-

10decimal digits, so about 10 terms could be added before the perturbations

becom, serious.

Therefore all we need do is add the statement DOUBLE S to our previous
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program. To ivoid.,having the double precision propagate into other parts of

the program where i-t fs not necessary, truncate S to another single

V Precisiop vari-able aind, use that, variable elsewhere.

Supposes There's 'No Higher Ptiecisib-n

Suppose, however,. that double precision is- not available, or that we

wcere in double precision to begin with! Fortunately, we can, in effect,

si.,Kate those parts of double precision that interest us by progranFc

i ~one',of a' number of well' known tricks. One of these is as follows,:

L S =0O

DO I J=lN

Y -C+X(J)

T = S+Y

C =(S-T)+Y

1 S =T

sum = S+C (rounded)

C represents the rounding error cOmputed in the ptevious step. Y is'

a slightly perturbed summand which is added to the sum Svia the tempo-

rary sum T. In pictures:

T ~ T

S-T XXXXXXI

+Yy

C =Error
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We don't expect any error in ,-T if our machine has a.,Suard A .it

The characteristics of S and T are either equal or differ by one, so we

expect their difference to be co~uted k tectly. The difference wilI be

about the s'ej of Y and will have a number of leading zeros, causin; a

left shift, so that we are sure. that the differencewill be accurate.

We need to apply our model to iget a credible proof of the effectiveness

of this progrki.. We see that the values in storage are

S=O

c =0
0

yi (c. 1+x)(l+nj)

S. - t = (S.; y)(l+T.)

c. ((sj-lsj)(I+a)+Yj'(l+y)

For each Greek letter, 'IGreeki < 6 G y induction the result is

n

Sn+ cn = -(l+ j )X

+ . = (l+n.)(l-a,) + 'O((n+l-j)e2)

That is, we've perturbed the input by a few ulps in single precision

independent of h and a number of ulps in double precision proportional to

n. This routine gives an answer about as good as we deserve without invoking

the double precision package. There a&e cases when the algorithm will not

work on machines that chop before rounding. On our CDC machine, if s and

t differ slightly, with different characteristics, their difference might

be zero. Then ai = -1 which ruins everything. Now we wouldn't expect

such s and t to occur very often -- they would be numbers just sTightly

on different s,!des of a power of two. But such a claim is hard to prove.
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In 1968 van Reeken "discovered" that the algorithm worked correctly on

every machine ;nd input-he could think of, for the purpose of ciriputing

. unning averages:
n

M - M + Vnnl.
n n n-i n

The purpose of computing, the running neap by means of the recurrence was

actually to use it in computing a running ,standard deviation by means of a

similar recurrence. Such a recurrence requires a square 6oot of A sum that

might ,become negative due to rounding errors if the v,','s are al.l nearly the

same. Therefore we would want to compute that sum using the single-precision

algorithm described above.

Kahan has since discovered a counter-example that shows that the

a1,gorithm will fail ori the running average problem on machines with no guard

diait. The average is over three million Values satisfying

< V 3

The last six digits in the single 'precision average are wrong, because s-t

is ,computed itcorrectly about T of the time, on the 6400. s, and t ,are

nearly always just on opposite sides of T. Clearly the erroneous result

depends rather strongly on the careful- choice of the i'6put. Nevertheless,

it is hard to understand a priori why a compter should average reasonable

numbers so poorly. But this is just a specific casv of the general principle

that it is very hard' to understand computers that do not follow sirmple rules.

After all, the trick in the algorithm is so easy to discover that at least

halt a dozen persons have done so independently. It is much more difficult,

however, to determine on which machines it will work,..or fail.

If this trick were needed only to solve differential equaton:, it
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would not be wrth crying over its loss. You then ould write a double

precision sqbroutine, in assembfy, 1anguage if necessary and call that to add

your numbers in double precision.

Why You Want Exact Differepces "

But this reaches into many other areas. It affects our ability to code

higher precision, arithmetic out of single precision by subroutines that tare

partial-ly machine independent. This may not appear important to you, but

when people produce numerical algorithms they would like them to Work, on any

reasonable computer. In the middle they will do calculations to essentially,

higher precision by some trick. The writer couldJinsist that your corriler

provide double precision. But Algol usual.ly doesn't (except on the B5500).

But there .is a nontheorem that tells you there is ,no theorer, to tell

you that if yotw want to solve this problem to singlc prece ,ion you must carry

n-tuple precis ian. There -cannot be such a, thearem to spocify n, since

n-tuple precistion can be simulated by single precision.

People who talkc about coding multiple precision with single generally

miss a couple of points. One is that they insist upon being able to compute

Y+Z exactly, for all combinations of Y and Z as the sum of two other

floating point numbers, say Y+Z = S1 +S2, where Sl and S2 almost

constitute a double precision number, with Sl the leading and S2 the

trailing parts. But the the d'fference between Y+Z as coip ted and,traiinq'pats.But her th d7preqiSi on.
Y+-Z as it ought to be might not be a machine represe-itable rumber sJngle /

It also, assumes that Sl and S2 must have the same sign, ad rthat isp't
tA report by T.J. Dekker shows how to do thi:s on "clean" wiachines, that is,
on machines or which the preceding trick wi' work. There is a book in
manuscript by Patrick Sterbenz in which he also shows how to code double
precision arith,,ctic from single, provided the machine is reasonable, like
360 equjipment. %nuth, Sectio. 4,2, also talks about this and even tas the
trick enshrined as a theorem.[ Exact differences are important for sums with good error bounds.
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true.

The issue is not what can you do exactly, even though if you have a 'solu-

tion for that you can do zverythifng -else.

The issue is that if you have az "dirty" type of single precision arith-

metic, can you make up a doub'e precision aritMmetic that is also-dirty, but

riot unreasonably so. The an.,wer is yes, but it is h~rder.

If you can get a diffetvnce exactly (if it is representable exactly),

;then for all the kinds of arithmetic we've been studying you have the equip-

ment to do double precistian arithmetic, coded in FORTRAN or ALGOL, us-Ing.

oniy the ordinary floating, point arithmetic. Then you can pyramid. And the

code is transportable to another machine You need only verify the most-rudi-

mentary aspects of the machine, like its number base, 'number of digits caried

la single precision. If you work at it long enough you can get operations

to be performed exatly.

Question: In trying to simulate the double precision, wouldn't it be

better to unpack the numbers ri6 work on them as integers?

Answer: Yes, but I am trying to write a FORTRAN (or ALGOL) program

that will compute a difference exactly.

Question:. What's the good of a FORTRAN program,. if you have to rethink

and reprove, that the program wi ll work when you go to a different mach're?

Answer:, If this program is done correctly, itwill work for any,machine,

whosearithmetic is somewhat messy. Then you pyramid this operation, using

single precision to get double, then double to get quadruple, and so on,

until the messiness catches up with you, somewhere around 128-1ength precilsion.

Question: With that length, isn't it still better to work with your own

number representation?
tThis red herring is raised by Knuth, Dekker and Sterbenz.
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Answer: More efffcient, yes. But the idea was to show that you could

write in an -essentially yma.hine, inlendnt language.

Question: But why-not use integer arithmetic in FORTRAN, if you're

going up to 100-length words?:

Answer: Then you have-to take into account machines like the .7094,

where integers are limited to 15 bits ('IRTRAN i) and overflow is not

detectable in an intelligent way. -Could you cot e things there? In FORTRAN IVz,

you have the 36 bits, but overflow isen less detectable. You would

have to clear the overflow bits before and test after each operation. In

fact, you could not only-do, arbitrary precision but 'be infiniely precise

it's rational arithmetic.

Question: Your code is transportable only with some assumptions about

the machine. And you haven't stated what those assumptions are.

Answer: The ass ption would be that whenever they do an arithmetic

operation the result is 'no worse than what you would have, gotten had you:

changed both the operands by a unit in the last place.

Question: You've drawn pictures of how :the numbers appear in the

machine. What if they don't appear that way, but involve lots of funny shifts?

Answer: The algorithms would work, but the proof gets harder.

Question: It seems you're assuming more than that the result you get is

no wt.."e than making a slight modification in the operands because you keep

making statements that'this calculation can be done exactly', but that wouldn't

follow from your original asumption.

Answer: No, the origifial assumption is that if two operands here suffi-

ciently few-digits, the operation is done exactly (the digits line up).

There are some numbers cr which you get what you should, ii, ,he absence of

rounding errors. Another essumption is the one about modification of the
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operands. The tricks are designed towork toward the numbers ith few digits,

where you can do something exactly and' then ,work your way back to the original

problem.

Qu,.3tion: In the time you spent working out this trick in FORTRAN,

it coild have been done in machine language for five different machines.

Answer: You could, but the trick, in FORTRAN, can be imbedded in code

a~,d carry the code wherever you want to any machine as long as it isn't too

,weird.

Question:. Are the properties you require (for the trick) going: to be

easily determinable for any machine?

Answer: Yes, they will be for single precision and once they are deter-

mined, the scheme will work for double precision, etc.

Question: If what you say is true, about being able to devise a tricK

for even dirty machines, then why should Xnuth, Dekker and Sterbenz continue

to lay out red herrings?

Answer: They started out from a paper by Mller that appeared in BIT

(about the same time as -my note in the CACM), which stated in a theorem that

floating point numbers are related i,, a certain way, provided the arithmetic

is such and such, and he set a pattern-fir the others. Knuth is not a numerical

analyst and -doesn't care about these things and he just pursued that rather

interesting mathematical pattern. Dekker works mostly with "clean" machines,

so he worked out his scheme for them. Sterbenz worked with the group in

SHARE that got IBM to change its hardware.

Questioni By the time you find someone who knows enough about the

machine to answer your questions, you could have coded in machine language.

Answer: That I dispute. Consider the B5500. We know what the charac-

teristics are: 13 octal characters with such and such arithmetic. We know
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that 'i', but not the order code,. -It would be easier now to code the FORTRAN

rather than leafn the order code. Or say, in a hurry, I want you to produce

roughly quadruple prec'slon ,add. 'ou'd flind. it faster probably t, take the

double precision add and trick i't, even on a machine-whose assembly language

you are utterly familiar with.

If Wdrse Coes to worst, to, cear out some digits (,so you can do exact

arithmetic), do the folls.ing:

o.O x
- r., -0 subtract the 1

now the number is
broken 'into approxi-
mately ,equal parts.

If you can do this, the rest is easy.

Proof for the Pseudo-Double Precision Accumulation

We write the algorithm here with :Greek letters for each error committed,

fGreekl -.,

S=0. S 0
0

C 0. c 0
DO 9 I=I,N for j = l,n

Y=C+X(1) y. = ('X-+Cj.l)(l+n.)

T=S+Y s = (sI;+Yj +T )

C=(S-T)+Y c, = ((sj-sj)(l+Cj)+yj)(l+yj)
9 S=T

SUr=S+T
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We wi l see that this program wrks -on, machines that normal ize and -tben

round. The equations with Greek letters in, them are all based-on. the-

assumption that the sum, of a and b is computed as (a+b)(l'+y,),.

We iintend to demonstrate the following facts by. induction:

n : n (n in2

2

rn, n  n {.n ) .

Exercise. Deterr, in the coefficient of E2 and show -tlhat it is 0(n).

Note that these insertions imply that the rounding error we attach to

Xi 'is o:f order e and. is independent of n to s.ingle precis-ion. The first

three steps of the computation provide-the basis fr the induction.

l Yl I 1n=0

s X 0 1 ,1 I

c 0 rO 0' Y, 0 rl, =  O = -TI

Y2  x2 n2 0 X1~l, = I = (i+9,)(l-0ll)

s 2  (l+, 2 )xl, +(l+r 2 )x2  .2*1 = 2  2,2 + 2
, + 2 ,2C2 ~(T) 1 (-- 2 "09 )x2

'  r2 ,1  -t 2  "I' 2  2

)21 4 1 -,)(2,2" -,a9 " :'(lNn)(l- l)2,2 4 1I'.a? : (I+112)(1'a2)

Y3 - (I+) X1  + (1+n3)( 2 2  
+ (l+n3)x3

s3 7, l+T 3 )x + (I+_t3)(1-cF2)X 2 + (I +T 3) (+n3)X 3

3,1 =" 1+3 Sl3,2" (I+t 3)(1'°r2)

R3, 3 k l+T3)(i+n 3)
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(-T (- 3 )x2  (t 3- 3)X3P. +. (-"'3)x2 + + -3)3

3,1 ="3- '3,2 3 3,3 303

X3,1 X3,2- 1-2 X3 ,3  l+ 3 -o3
3

n

e4,,: m; have written =n,t Xn, i -rn, .o that s. - 1 x i  and we
3,j

drmogped all terms -of order' or2 o 3, so that "+0(e 2 )" should,be

appended to each app'oxfiate equality to m ke it exact. These steps provide

a basits for the indaction and indicate how the inductioh hypothesis was chosen.

Now let us drop subscripts,-of n and-write-1 for n;t in what is -to

follow. Then we find

n-1
y X(1+n) + -(,+I) r_ ixi

n -n-1 n-IS i=ln,=iXi (l+T){ i l ,iXi .+ X(l+T) + (l+I) i=11 r1 l ixi}

Assuming with the induction hypothesis that r and -X are independent of

x, We find formally that

for i, < n, (l+') 1l~ + ( 14+)(l+n)r-i
Q = (T+q)(I+T)
n-in

Also

n n-i
C r X.. = (.i+V){x(l+n) + (1+,r) 1 r1 l,iXi }

i=1 "' "i=

n-i+ (l+y)(l+a){ +- (l+){ , + (+n)r )

Then for < n

Then for i n
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+tr n~ = (i y ( 1.)- l _ , + ( + / ( a T o i

and

rn,n = (1+))(-a-T-T) =%7 n+O(E1

Note that
C-2

Xnn = rn-n + Sn,n= ~(l+y)(l+n)(-a-r-aT) + (l+n)(1+)

- -( 1+n n ) '( 1C -n+0 2 )

:(l+n)(l-ai+O(e )) .

Therefore the "induction" hypothesis is verified directly for Xn,n and

rnin without any induction.

For the .case where i < P- we have deduced the relation

l + T (lf)(l+T) jf 1  jI
We are interested in X rather than S1 so we note that

i' Xi 1 1 i -l i1 I X-I i
. ri  o r ' J  i 0 1 rli

When we perform the indicated matrix multipl-isations we fi.nrd that

xiii 1 +O(E) n-U+O(2 ) p-. ]
J - + O( 2) -a+O(E 2 ) rx,,i

We are now ready to apply the induction hypothes;is for 1,2,.n-I

to see if it holds for n. First there is the case i < n-l.

Then
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r 2 22[xnl 1(2 nj ( )  0+Tr)(l.Ol (CI) )

;-:~~~~ (+ni,) (1-Cri+0(F-2))_n+0 )

The final possibility, that i = n-I so r 2

leads to the same result. Note that a variety of induction hypotheses would

satisfy the induction step and the computation of the first few values in

:Lhe basis is essential to find the correct hypothesis.

We must step back from the blizzard of subscripts and understand that

the important step was realizinq, from the picture, that a useful induction

hypothesis could be formulated. Note that our picture is based on the stan-

dard way ,of doing floating point addition, yet the proof derived from the

pirtre is completely valid for any machine, such ,as a properly designed

logarIfthmic machine, in which the arithmetic is done by rounding the correct

resu.l t.

This type of algorithm has been developed independently by

Babuska, "Numerical Stability in Mathematical Analysis," Proceedings

of IFIP Congress 1968, Vol. 1.

M~ller, "Quasi-Double Precision in Floating 'Point Addi.tion," BIT 5,

37-50 and 251-255.

(MOller's algorithm was designed for bad machines and is not optimal

for klood ones!)

Knuth,'Seminumerical Algorithms, pp. 201-204, 1969.
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10. ADDING UP A LONG STR.NG OF NUMBERS --

A MYSTERIOUS ALGORIT M WITH A MAGIC CONSTANT

The previous algorithm will not work on a COI. 6000 machine. Howeir,

we can make a somewhat Mmilar algorithm work, even in the face of appare,'t

theoretical difficulties.

Theoretical Difficulties ?)

The difference inmachines- is in the model of arithmetic that may be

applijed to them. The good ones compute A+B as (a+b)(l+y)', while the

others yield (a(l+a)+bcl+)). Perhaps, though,, a more clever algorithm

could be devised that would yield a result in single precision almost as

good as if double precision had been used, even on machines that compute

accordin& to the second model. The Russian Viten,'ko (U.S.S.R. Computational

Math. andMath. Physics 8 (5) pp. 183-195) has shown that for any algorithm

for a sum I xj(l+ j), on a machine where the second model must be applied,

the bound 6 ~ s log2n is the best possible. Basically, addition on a

binary tree, structure is best possible. For example,

8
,E xj = (((xl+x2 ) +(x3+x4)) + ((x 5+x6 ) + (x+x 8 )))

Clearly each x will have 3 = 1og28 rounding errors attached to it. Any

algorithm for compting, the sum of eight numbers will have at least three

Greek letters attached to at least one of the operands,

DIFI - The Algorithml That Defies Viten'ko's Theorem

Viten"ko's theorem is true, yet misleading. Even on machines such as

the CDC we can sum many numbers without explicit double precision, with a

backward error g of a few units independent on n in single-precision,
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and O(n2 ) units in double precision. For instance, the following mysterious,

algorithm DIFI will work:

= 0.0
C = 0.0

DO 1 J=I,N
Y = C+X(J.)

T = S+Y
F= 0.0

IF(SIGN(l.O,Y).EQ.SIGN(l.O,S)) F = (0.46*T-T)+T

C = ((S-F)-(T- F))+Y
1 s=T

This code is machine independent on all North American machines with floating

hardware, Howeverj the proof that it will work is very difficult. Yet

nothing about it contradicts itenW'.'s work. The model (a(l+a)+b(l+))

for addition is not categorical and even bad machines often behave better

than this model indicates. The mysterious algorithm is based on a careful

explitation of some of these loopholes ,where-the model is overly pessimfstic.

Proof of DIFT, the Magic Constant AlIgorithm

If we compare the proof to follow with that in section [9], we see tl;at

an entirely new line of reasoning is necessary. First we"muwt see how the

special fiddVmng works, In the previous program we w rqte

C (S-T)+ Y

in order to get

c = ((s-t)(l+)+y)(+y)

This, just won't work on machines such as the CDC. Nonetheless, there is a

kind of arithmetic that can always be done precisely. By exploiting this



kind of arithmetit, 4e car ,' ,oute a c satisfying such kh equation, with

a and y perhiaps sqmwOgt larger.:. Suppose we want to determine the error

iii A-B as tollows:

A A, >

B [Z

-c EZZI

The important thing to notice is that' Z = A- C is computed precisely. C

was formed as a number with the characteristicof A and then-was normalized.

When it '4s subtracted from A the part shifted out and lost is just the

previous normal .zatonr s zeroes.

Consequently we can conclude that z 4 b and that their difference

could be computed precisely, except in .the case that their characteristics

differ by one. The fact that B -Z may not be computed preci';sly would 5e

considered disastrous by Moller and Knuth. We will find that a small pert:r-

bation in B is no worse than a small perturbation in the numbers we are

trying to sum.

We will replace the statement

C = (S-T)+ Y

byI' byF = 0.0
IF(SIGN(Y).EQ.SIGN(S)) F = (0.46*T-T)+T

C = ((S-F)-(T-F))+Y
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We Will Peed a picture -,to understand, this:

Case 1 Case

char(T) =char(.54T).=char(.45T)+l char(T,) =char(.54T)+l =char(,A46T)+1 or 2

Step E T

15 .-40.S j

Step 2 T ' _T

-j " .54T - L .54T

F'[- --46T F ]46TO

F has been fabricated in such a way that it can be' subtracted precisely

from T. The ,proof of this statement depends on the machine. First, consider

a machine like the 650 which does arith;,ietic by. dropping right-shifted bits.

Such arithmetic is illustrated in the picture. F is formed from a nisnber

with the characteristic of T, by left-normalizing and inserting zeros at

the right. Then when T-F is computed, F is right shifted so that those

same Ze.ros chop off, with no loss of accuracy, so that T-F is exact.

A similar argument applies if a whole guard word is used' and then

discarded as ,on the CDC 6^00. The contents of thL guard words are zero

when T-F is computed.

Suppose there is a guard digit as on the IBM 360 series. Then we must

distinguish two cases, according to char(.54T).



Guaid digit

Case 1 Case 2
7 Step 2 [( T

-1 ".54T I__ -0 E .54T

F FL36tff 0-" .46T G{ (or -f6 0)

Step-3 iuzz-- c"
= 46TI~ - _46TI(0

S.5T 'm 0 .4T

In the first case, char(.54T) = char(T,) char(.46T)+ 1'. Then the guard

digit is always a zero and the answer T-F is precise. In the second case,

the guard digit may not be zero. But. F is always left shIfted at least

,once after step .2, so the guard digit is saved. Then when, T-F is computed

kthe guard digit is shifted back to the proper position. Therefore it ,may 'be

( non-zero. But char(T-F) < char(T) so T-F is right shifted at least once,

so the guard digit is saved and no error is made.

Suppose finally that a whole guard word is kept in the subtract-ion and

used in the subsequent normalization as is done by, the IBM 7094. Case T js

precisely as in the case where digits are discarded. The gy.ard words are

entirely zero. Case 2 is precisely as in the case of the guard digit. The

only extra digit that might be s-aved in the guard word is always a zero, so

it makes no difference.

We are satisfied that T-F has no error. Now we mustlexamine S-F

to determine what happens when ve compute
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T= S+ Y

C =::((SF)'-(T-F))+Y

Suppose first that ,ITm1 is substaritlal, say at least 1ITI. Then

((S-F)'-(T-F)) is essentialy (S-T) to a few ulpt, and is approximately

-Y, to within a few ulps of Y', so that t' is cotuted to be a few ulps

of Y. Then we can safely c = ((s-t),,('1+q)iy), siith a 'small a, perhaps

7 2e. Then we, can map-the- error back ,to a small perturbation in -X, as before,

unless X is so small we don't care about it.

Suppose next that IYI is s6-sLvall that S A T, and Sign(S) sign(Y).

Theh ISI > ITI, F = 0, and T was, formed by a magnitude subtract from S.

S-T is always. -correct, s-o that a = 0., Then (s-t'),+y will also be done

correct'y, except for possibly an ulp due. to differ'ent charadteristics. We

illustratc with the ,case of a guard .digit:

T = S+Y L, S

or .. TEZ

Normalize T G Error T i---- Error - +

S-T I LIIL.Z

S --

X~ o
M "C+

Norm41i ze -F: 0-11
+W Y G '

C (error) =+ one digit
possible due to
diit ̂ acteri stics
differing by one
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Ail arithmetic units will work properly in this case to give C almost.

exactly equal to (s-t) +y.

Suppose, howeVer, that JYJ is small so that. 'S.-" T, and; the signs of

S and Y agree. 'Then IS! < ITi. In fact, J;I~ > JIs > fT-Fl > IS-Ff > JFJ.

Rgmieber that T-F is always precise What abbut S-F? The only way

accuracy is lost is if F is right shifted so far with respect to S that

non-zero digits in F extend to the right,:of S-F so that they can't be

included in the resuilt. But S is between T and F. Consequently F

will be right shifted with frespect to; S no fartheir than with repect to t,

and perhaps less, Since T-F is pccise, S-F must also be pr.ecise.

We only need to know if (S'-F) (T-F) is precise. This will certainly

be the case if char(S-F) = char(',-F). Theriifre we only need to locate and

investigate the cases where char(S-<) < char(T-F).

First we need to establish what the possible alignments relative to T

might be, for each operand. S T 1 so it might have relative alignment 0

or 1 in the addition unit:

I . -S one digit

relative alignment 0 relative alignment I

Now F 4 .46T, so it could have alignment 0 or 1 with respect to T,

or even 2. The case of relative alignme.t 2 occurs only on binary machines,

and requires that a characteristic jump occur between .46T and .50T, and

again between .92T and I T. Since S-F and T-F are about .5,T, they

-ust hawe the same characteristic and hence the seme alignment relative to T,

whil:h could be 0 or 1.

With these facts and mootonicity,



10-8

char(T) >'-char(S) I char(T-F) > char(S-F) > char(F)

we can 'construct a table of all- the possible alignments of ooerands:

(0 (0 or 1 )o or 1) (0 or 1-) (0, 1, or 2)

Case Align S Ai,n T-F Agn S-F A".igIF_

1 '0 0 0 /

2 0 0 0 1 /

3 0 0 0 2 /

4 0 0 1? 1

5 0 0 T 2 Excluded

.6 0 1 1. 1 /

7 0 ' 1 2 /

8 1 1 1 1
9 1 1 1 2 /

Case 5 is-excluded because it is impossible by the preceding paragraph's

argument. In all the other cases except 4 the alignments of T-F and S-F

agree, so that (S-F)- (T-F) can be computed precisely.

Case 4 requires a finer analysis. I't -corresponds to the picture

S T I

On a machine which discards digits (650) or the guard word (6400), we

know the digit X in F will be zero. Otherwise T-F could not be computed

precisely, and we know that it is. Therefore the X in S-F will also be

zero. When S-F is aligned for subtraction from T-F, the X will be

discarded, with no loss of accuracy.
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On a machine with a goard word (7090) or digit (360), the same analyss

holds', The digit X is not discarded but is in the guard digit. But because

- we know T-F was computed precisely, and it has no room for the guard digit

X, the guard digit must have been 0'.

Therefore- (S-F) -'(T-F) is -always precisely computed and we can be

sure it is precisely s -t. it wi1l then be added to Y to give an answer

correct +o a few Ulps of Y.

The important thing to remember about the workings-of this mystery

a',gorithm in this case is that the expression S-T might not always have a

Atnj 1 relativg erro.' or be precise, but F 'has been rigged in Such a. way

tha't the expression (S-F.), - (T-F) is always precis8ely S-t.

The mysterious constant 0.46, which could perhaps be any number

between 0.2b, and 0.50, and the fact that the proof requires a :considera

tion of known machine designs, indicate that this algorithm is hot an advance

in computer science. Thi's sort of devious reasoning is not desirable ard,

should not be necessary, But we can expect to have to do more of the same

until hardware designers understand the trup costs of their decisions.

Can Using DIFlt Make the Answer Worse?

Is it possible; by using the function DIF1, to get an answer that is

worse than nod having used it at all? This needs to be checked for machines

like 7094 and B5500, which have guard words. We must check thac if the

difference is representable exactly, that's what you get. This code will

obviously not work on machines which represent numbers by their logs.

TDIFI i, the"',agic constant" algorithm.
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The e-senvOr of working out DIFT tor machines on which it is not -

needed is that in using, this code to, make it machine independent the results

may be Worse than before.*

Question: How did you happen to write this code?

Answer: It. was written-when we were switching from a 650 to a, 7090

-using, code that had, been previously written cor j-Ferranti-Manchester Mark I,

when we were wonderi-g-how we'd ever live througha'il these transitions.

So an attempt wos made to write code that was machine i'ndependent.

Question: -I can't see in, my mind the sequence that led to your

having written such code.

Answer ;. Ii my mind was a picture of digits, of course., digit strings

as might cdn from a desk calculator, octal calculator, or a binary machine.

The Ferranti-Manchester had, to be coded in teletype :code -- there was no

assembly language so everything had to be visualized quite clearly --

digits had to be input as characters, like I, @, Y. It was -the practice

of visualizing what was going on in the F-M that made it possible for me

to see what was going to happen for the various implementations. The

tricky part is the .46*T -- who would think, to do that?

Question: That was the part I was looking at. I more or less con-

vinced nLyself that it would Work on the 6400 and probably on the 360, for

entirely different reasons. I don't call that machine independent.

Answer: The trouble is that it is machine independent in the sense

that it is- independent of the machines currently on the vtp-ket.

Question: By a proof that is different for each one?

Answer: Right, and that is very unsatisfactory.

In looking at this code, you, will learn a new way to look at numbers,
nmely as strings of digits.
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-Question: 'I don't see any ,underlying principles.

Answer: The underlying principles are'that the digits get pushed

off the right hand' side of the register but it is not exactly certain

what 'they do as they go.

Unfortunately, the proOf frr DIFI is different for each machine.

What is annoying is this: The cnmmercial, economic value of machine

independent code is so great that people have tried for a long time, to-find

it. And they will continue to try. The-time spent on floating point

calculdations is very small, in most cases., However, that code is normally,

Written by peole who, if they write it successfully - ;re a littlemore

,educated than 'any of the other ,prqgrammers. Therefore-, when an -error

occurs in that :code you. have a great deal Of trbuble debugging it unless

you, find just such a person as wrote it. Bt such people don't stay

around". So the ,expense of obtaining code like-this and, transferring it

from one machine to another is horrendous,.

Question: Isn't it true on that precise argument, that code like

this, that- loo ,, like FORTRAN, is actually goir,; to'be more expensive

to transfer to-a new machine than code that is explicitly machine ,code

where somebody knows he'll havce '6 go- in and rewrite the code?

Answer:, What you ae s.ying is, shall we write the code in assembly

language with careful oocumentation to explain exactly what we are doing

hoping then, that when we switch to another machine, anyone who reads

,and understands the documentation ,will be able to translate into the new

assembly language, or should we try to write in machine independent code

with some sort of theorem, even an ugly one,, that tells us it'll work on

almost any machine you can think of. It sew.j to you" that the first

.__
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rationale, is more sensible. I used to think so to. But I ,have some code

I wrote in 1965 that I can no longer understand, even' -,.ugh it is richly

commented. it was written in assembly language and uses every bit of

the machineto squeeze every ounce of perfomance out of its code. Now,

even though it was, perfectly reasonable and transparent at the time, it

would-take me several days to once again understand it. That's very

expensive.

Question: That is still less expensive than taking this peogram to

a new machine, say that is just being ,uilt, ,and finding out in 6 months

that it doesn't Work.

Answer: Yes, so I guess my contention would be that machines

ought to be better designed. That there ought to be some uniformity in

the arithmetic units so arguments of the k-ind we're having are innecesgary.

Question: Why are manufacturers so unresponsive to your pleas?

Answer: Manufacturers are individuals who are sometimes on the ascendancy

politically, and sometimes not. The sales organizatioh is generally

on the ascendancy, when the company is on the make. The salesmen have

their own particular way of finding out what their customers want. But

customers only know part of what they want. So salesmen make rather

shalnw estimates of what is wanted and present misbegotten specifications

-to the engineers, who are happy to implement anything. CDC salesmen

collected the specs for the 6000 and 7600, One salesman tried to tell me

his customers didn't want the machine to round, because he hadn't heard

the appendage "the way they were doing it." And you know why. So the

salesmen said, they don't have to use the round instruction.
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DIFI should also work in double precision, though there it is harder

to see what's going on. Double pretision- code on the CDC is not a fixed

thing but varies from compiler to compfler.

Question: Not only does it 'vary frm compiler to compiler, but one of

my friends on the system staff tells me it is incorrect. The guy who wrote

the algorithm for the compiler changed certain things in the way it died its

double p7'ecisior, multiples, for instance, so that it would go faster.

Answdr: That's another-reason, for example, for wanting to use a pyramid,

since you don't know what kino of double precision has been provided. The

pyramid has the property that you know-what happens in 'double precision

because it is whathappens in single precision.

Why Are Exact Differences Important?

I don't think being able to code double ,precision is a very desirable

thing in itself, though people have worried about it,. 
r

The problem wilI arise when somebody has used a trick of this sort

unknowingly. He has used this trick with, a picture 'in his mind of how

machines work. He thinks he has- a machine independent code, and he needn't

know the detai:is of each machine that he runs his code on.

That's only one probl-em. That problem collides with another problem

-- really a different, approach to the same ul'timate desideratums: Is

numerical analys'is a science? Or is it just an art? itwas taught tome

as an art. My professors did not think of it as mathematics. To think of

"'Dekkcr and Sterbenz show that if the single precision arithmetic satisfied
certain rules -- the essential rule is that if you compute a difference
you get it to within a unit in the last place, or thereabouts, and pre-
cisely ,if it can be represented precisely -- then you could get double
precision. The double precision they get doesn't satisfy that rule, but
with a little extra work you can clean it up. Then the double precision
would look like what you would have on a certain kind of machine, in which
its s-ingle precision was what you had just coded to be double precision.
Then you could pyramid this.
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it thNat way is really a step :backwards, 4ince all the old class-ical mathe-

maticians, Euler, the Bernoulli brothers, Lagrange, LaGuerre, lhought of

mathematics and numerical analysis as practically syno-nous. They didn't

distinguish the two. But subsequent mathematician did; Matheaitics was

regarded as a simplification of real' life and nrumerical analysis was a

compromise.

Numerical Analysis vs. Mathematics

If we carinot iprove anything about numerical analysis, then we- run the

risk of never being able to prove anything,worth-knowing about :coputers.

You must distinguish -between numerical analysis, and mathematics, in which

there are infinite processes ,and in Which things are alleged to converge.

Until you start to discuss rounding errors -as they really are, and under/

overflow as they really are, you don't have numerical analysis. van Wijngaarden

thinks this way too; in 1965 he published a paper "Numerical Analysis as an

Independent Science," BIT 6, 66-81. Knuth has condensed van Wijngaarden's

many pages- into about a page.t  Knuths approach is to say let's discuss what

'van Wijngaarden has numerous rules for entities which would be represented
in the machine and would be intended to represent real numbers. These are
to supplant the rules we learned about real numbers. But since most peo-
ple don't understand this much smaller set of rules, what are the chances
of re-educating people with van Wijngaarden's? He tries to skirt around
another problem, that of usin one symbol to mean different things. He
would like his rules to hold if you replace each number by a set of numbers
that differ only by a few units, in the last place. You should make only
those statements that will remain valid if the operands are perturbed before
the calculation is done. Questions like, are two- numbers equal, he thought
you ought not to ask. You ask if they are equal to within a tolerance,
which is tantamount to saying that the equal sign represents an operation,;
you perform this operation upon two operands and the result must be inde-
pendent of what you would get had you perturbed the operands by at most a
few units in the last place. Two numbers may be equal, to within a tole-
rance, or definitely different to within that tolerance, with some border-
line areas in between. Knuth discusses these notions. He has a = b, a b
(a almost equal to b), and a - b (a not quite as equal to b as that).
Philosophers and other people would sum this up by saying -- if you do that
you will be unable to say that uo by an fyou say. See Knuth,
Seminumerical Algorithms, 199, 1969.
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is a 'reasonable model of what is done in a comouter (or could be) as merely

a small distort-ion of what would happen i n the world of real numbeit.

A + B =-a + b whih gets rounded

'That is a very siliple rule. Unfortunately computers don-t obey rt

But Knuth does have the beginnings of a science. Knuth has corwnromise -.za

bit-, as we could go frther and describe all operations in terms Of integers.

Knuth has done this,,,?by writing programs for MIX, an integer ffiaIchine., He

says these will be the definitions of the floating point operations.t

So there you see the two problems converging. One is -- can you write

machine independent code, The other is -- can you think :of numerical analysis

as a science. If you claim to have machine independent code it means you

have proved something about it which is tantamount to proving a theorem

about an algorithm, and that's the type of thing we want to do in numeri-cal

analysis.

SA Third Consideration-. How Much Precision?

There is really a third leg on this stool. If you lose any One of the

threi, the stool will fall over. The third leg is. this: can you pfove

theorems about numerical analysi-s comparable to theorems -in computational

complexity, but bearing instead on how much-precision you have to cariry to

do a certain job. There are theorems about how long it takes to do

Anything that is not implied fully by the rule above will have to be fer-
reted out by looking at the integer manipul.tion. You have to look at
exactly what is that rounding rule and exactly what is the base Of your
machine, Knuth says he doesn't care wh,,t the ,base is -- a byte can hold
64 or 100 possibilities. In my experience thmi is a disaster. All sorts
of ugly things happen to non-binary machines.
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operations -- say multiply two numbers together.

- There's a theory, due to 'qe iga-Pan (also. in Knuth) which tells you

that if you have an nwh degree polynomial, you can, by rearranging it in

various subtle ways, reduce the number-of multiplications by a factor near

two. The theory doesn't telbyou how many digits you will need, to carry,

however. How tong. does it take to multiply two matrices together? The

conventional way requires. n3  (,for n xn matrices)-multiplications.

Winograd showed that roughly half that many will da. Strassen has shown

that actually it is n2"xxx where the exponent is 627 instead 'of log2 8.

Other theorems say how much storage you need to do something. But there

is. a shocking lack of theorems that tell you h6w accurately you have to do

something. These theorems don't exist because in principleyou could code

-ultiple precision using only single precision arithmetic. And that's the

explanation for wanting to do some of this, just to demonstrate that if

you had to do it by brute, force, you could do this coding, and it would be

to some extent machine independent. In the absence of defini'uive rules on

: machines work, it is hard to say just what that code should' be like.

tTo add two numbers of length n in a machine whose components only have a

certain complexity takes on the order of log n. Machines currently do
run close to the optimum, which is nice. A lower bounded for multiplying
is similar, but there are no algoritins that really come close; usually
n log n is more realistic. So there is room to improve multipliers. Or
the lower bound.
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11. HOW IbJCH PRECISION DO YOU NEED IN GENERAL?

Beyond the problem of hardware and software flaws looms the larger

question of how tittle precision can be carried and still yield a desired

accuracy in the result. Current thinking is that this question is likely

to be refractory in the foreseeable future.

T.J. Dekker (in Numerische Mathematik 18, #3, 1971) demonstrates 'how

to Use single precision floating point hardware to compute double precision;

addition, multiplication, division, and square root. His code is weakly

machine dependent in so far as it requires the base and word length. But

we know that we can write machine independent code to deternhine these para-

meters. His double precision addition is similar to our algorithm. Multi-

plication is based'on splitting each operand into two parts. He must assume,

however, that the floating point units give correctly rouhded results or

something close to them. His algorithm will work on a GE 635 with proper

software but not oh most machines in general use, such as the 360.

A more serious problem is that the hardware commonly built for double

precision does not satisfy as good a model of arithmetic as that for single

precision on the same machine. The GE 635 comes close because extra digits

beyond the double word are included in the arithmetic registers. On most

other machines, such as the B5500 or IBM 7094, the hardware is basically

double precision. The good model satisfied by the single precirioh instructions

is a consequence of the double registers being already present in the arith-

metic units (or we could look on the double precision facility as a cheap

bonus for doing the single precision properly). But there is no guard digit

readily available for double precision arithmetic. Tt would have to be built

in, and it generally -is not.

We would like to be able to program quadruple precision on double
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precision machines by-the same trick Dekker uses to get double precision on

single precision machinesi. Unfortunately no ma'iine comes cl'osee'-nough in

double precision to the modl" "round the, precise result" for this to be

possible. The problems caused by this fact are discussed in-Kuki and Ascoly,

"Fortrean Extended-Precision Library," IBM Systems Journal 10, 1971, p. 39".

After the design of the 360/85, it was desired to simulate the double-long'

word arithmetic of the 85 on other 360 models which had cnly long word

arithmetic registers. Because of the shortcomings, of the long ,word arith-

metic, it was extremely difficult to simulate double-long, particularly in

division. It seems, however, that a rational' design of double precision

hardware, to give always the correctly rounded result or something, very

close to it, could be achieved.

Students' Report: Higher Preci-sion Out of Single Precision

After a number of false starts we concluded we could reasonably go about

producing double precision from single precision by the following strategy:

6400 floating point DIFFt dirty stngle precision

(start here; it is about (exact subtraction (much like 6400 floating
the worst around), routine) point but without cancella-

tion pyvoblems; has error
of < I ulp of the result)

We thought this dirty single precision was a good place to start.

The technique published by Dekker which looked most promising for coistruct-

ing double precision out of single precision led to a double precision that

was off by a few ulps of double precision. Then weld have to have a

technique to turn dirty double precision into clean almost-double precision.

1DIFF uses logic like that in DIFI [10] to determine the difference
between two single precision numbers with minimal error.
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Given this technique, we'd first apply it to the dirty s;iae precision to

get clean :single precision, since the Dekker method star-Ited with cleit.l

single precision.

Continuing from above:

dirty single precision -+ clean single precision (dorrectly rounded)

.Dekker dirty double same technique, c0ean, almost
ethoision as bove ddable precision

(The best to clean it up (Then you start all
is to-throw away a few bits over again.)
and get say a 93 bit result
to get arithmetic ,with same
characteristics as the
machine.)

Perhaps by another technique we can produce clean, truly double precision,

b-ut we didn't think of it until too late to 'try it; it would be a nicer

result.

Machine Single Precision -) Dirty Single Precision

This is done using the DIFF subroutine. It is this step that has to

be machine independent,i n .that it has to work i' the machine rounds, chops,

normalizes or not in its ari-t'iietic. Once you have the dirty single precision,

oinly the base, of the machine and the number of digits carried is important.

To do this, we compare the 'sign of two numbers to be added. If the

signs were the same, we simply used the machine's arithmetic. if the signs

were opposite, we ordered them by magnitude and used the DIFF routine.

Question: But if you use 6400 arithmetic to compare two magnitudes,

they cn come out equal when they are not.

Answer: Yes, we forgot about that.

Question: Can't you just feed the arguments to DIFF and see if you

get a positive or negative answer?
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Answer: No, if you reverse the arguments sent to DIFF, you-don't get

the right result.

So we- still have this problemof the comparisoh.

Kahan: If you have two numbers that machine arithmetic says are equal

but you suspect are not, you could send them in both orders to DIFF. If

they are equal, both results will be equal. If they are not equal, I think

you'll get zero. in one ,ase and the correct result in the other.

This is the crucial problem. If-.when you feed tWo numbers to the arith-

metic unit it has the privilege of muddying them by as much as an ulp before

it does anything, then you can't make del-icate comparisons. You cah-'t

even- talk about a number because the arithmetic unit is talking about a

different one, and, it won't tell you which one.

Dirty - Clean Single Precision

This is accomplished by a trick which works, regretably, only for

binary machines.

We use a procedure that, we think, takes two single precision numbers

into their double precision sum,.

LZII~ II nzz~ jjJ you get two halves
more si gnifi cant least s'gnificant

You look at the l-east significant half and see if it is more than half

a unit in the last place of the more significant hallf. If it is, you correct

the more significant half. The easiest way seemed to be to have a way to

construct a numiber that is a unit in the last place of a given number.

The scheme goes like this:



F x 71 ] X is x shfted n-i bfits left,
+[ 7 where n is the #iumber of bits in

the word. a depinds on how the

S+a 1" 0 machine feels about rounding thisi "X+I )+ a = 1 0operatiqn-

Acn.'t be more than 1, since we assume the error is not more than ! ulp.

Since the nwubers have the same signi the number cannot chnme out too low.

Nw subtract off X:

I + +1 l

- -x using DIFF (in case there was a carry and the
exponents are different)

1+a

l+a lines up with the top of the original number x. Because the

machine is binahy l+a can only have two possible values,, one of which is

bigger than, the original -number .(the 1 digit is the leading positign. of x,

so we either have T in the,. leading digit (0 = ) or- 2 in the leading,

digit ( M = )). On non-binary machines, you would know that that first

digit was a 1, only that it was nonzey-o in, the, leading digit of x. For

an arbitrary base machine, you'd get b+a, where I < b < base of machine.

Once you've determined a = 1, you want to get rid of it. You can't

just subtract 1, because you don't know where to put it (if you did you'd

have solved-the problem). But in binary, it is very easy; you Just divi'de

by two if' = .

So we have a unit in the last pl-ace of a number.

Question: What if the division algorithm of the machine is wrong?

Answer: Actually, we multiply by O.E.

Question . But what if multiplication is funny? The old 360 way of

multiplying lost the bottom digit of single precision, if a normalizing



shift was ne.es'sary, -because there was no guaid digit.

Answer: We r-e assum.g that if there -are only a couple bits in, oach

,number, the mUlltiplication vl-1 be exact,. In constructing X, we.re

multiplying by a pOwer of 2 -and it is reasonable to expec-t the multip-i1-

cation to work if one operand- only has one bit. But even if X is iry>error,

it doesn't matter because yov subtract it off again. All that really matters

is that X_ have the correct characteri-stic.

Single + Single -+'Double Sum,

jXJ > 1Y-1; X and Y -t're single precision and the arithmetic s

dirty but within an ulp of what you want. We are adding X and Y and

want to come out with two single precision numbers Z and ZZ, such that

if you do in infinite precision add of Z and ZZ, you ,get exactly the

infini:te precision sum X+Y. We'll go through the argument -assumivng Cltan

arithmetic, then , consider the cases where dirty arithmetic makes, a difference.

The Algorithm To Do This

SSDADD(X,YZ)

DIMENSION Z(2)

Z(1) = X+Y (may be rounded, so correction may need to be negative)

Z(,2) = Y-(Z(A)-X) IXi > lYI

Z(l)-X will be done precisely. Since the error is less than 1 ulp and

because both Z(l) and Z(2) are representable, they must both be exact.
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In the case of dirty arithmetic, .you get in trouble if sign(Y) I sign(X),

and JYf < T ulp of X. So we test i, the routine for- this condition (using

the bit extraction routine), and if it holds, return X as Z(1) and Y

- as Z(2),. e4en if Y is very much smaller than X.

W d'se t~i~s to--get clean single precision and to know how to round

cr n ty-we do need the exact answer. This ,routine is also used in the,

-idrty double precision add routine -dnd there we have -good arithmetic alrc.ady.

Kahan- I'm not- convinced you' s got this working, or that you're so
close that I'd accept it s feas~~e. There are still lots of holes.

If'you could work out not jjLst the . r~ic-am b40, the way of understanding

arithmetic so, that you could pvriAar peni ke this without great agony,

it, would th ,n be possible to take ,program that worked on apy machine and

if it had been wrfittea in.such aoway that, somewhere, the code on that

machine had been designed to simulate first a standard machine us,.-Pg rounded

arithmetic, you would tien b- able to use that code, if you too could simulate

the Same standard arithmetic. In .principle, code conversion wou'd -be
accomplished by donsidering the al-gorithm *that conyerts one kind of code

into another and imbedding it in your conversion procedure. Peope can't

dothis yet without making the conversion routines very machine dependent.

You're trying to solve the problem of' designing the conversion routines to

change any machine's arithmetic into some standa'd arithmetic on which you

base transportab-le programs.

[low Much Precision Do We Need?

We might come to the conclusion that multiple precision is something

everyone wants but no one wants to pay for. The sales of the 360/85 were

poor,, possibly because of other factors such as I/0 mismatch with the CPU.

41
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'We rarely see exactly what the benefits and costs of double precisior, hard-

ware are, because other improvements are ustually made in the machine at the

same time.. Sc what follows i- in the nature of opinion.

Whatever F recision is supported Ps standard, and this may be the so-

called double ptecision at most 360 installations, there should be a cheap

way of gettingdbuble the' standard precision, preferably in hardware. A

little judicious iseof double precision makes it possible to guarantee

good results in s,' ngle precision, and, more importantly to dispense with

much of tie error analysis that must be done when the calculation is carried

out in single precdision. In the quadratic, double precision enables us to

guarantee answers correct to a few units in the last place of single preci-

sion and we need endure little error analysis. In matrix calculations, we

can expect that double precision accumulation of scalar products will reduce,

the effect of rounding, error to well below the uncertainty in the-data.

So double precision i's useful, but is it worth what it costs? We can

practically say that the cost of double precision hardware is so small in

the total system that we can disregard' it. But if double is good, is

quadruple precision better? It turns out that demands on precision taper

off very rapidly for Alnost all technological users; i st orbit computa-

tions when done rather crudely, require at most 100 bits to give satis-

factory results during the lifetime of most artificial satellites. 'indeed,

no physical constants are known to more than about 18 significant figu-es

(60 bits).

The situation for mathematical calculations is rather different. For

any precision a calculation can be spedified which requires that precision

to yield an answer with a single significant digit. Where cancellation is

very severe, as in the evaluation of integrals of oscillatory functions,
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arbi-trarily large precision is required, and how large can't be predicted

in advance. We can tafej5 -assume that if we do these computations and the

result is inadequate, we can increase precision ar,d do them over, and the

cost of the preceding runs with lesser -precision will beutterly negligible

compared to, the cost of the current run. Since the amount of precision

unpredictable, Software seems to be required.

Actually, really high precision spends so little time on exponent mani-

pulation that it is really more in the realm of ihteger arithmetic and is

outside the scope of this course.

'In contrast, to the preceding, it is very common to want just a little

bit more precision. Let's examine a subroutine to compute a transcendental

function. These functions ate commonly approximated by rational functions

such as

3 2ao X +alx2+ a2x + a3

x3 +blx 2 + b3x + b4

Evaluation of this function-requires five multiplies and one divide, An

equally close approximation can be had from a function of the form

al,
U. + ' +  2 3

X + 'a2+.0X + a3 4 + to -4

which only requires three divides.

Although the latter expression can be evaluated more quickly, we have

more trouble from cancellation. Therefore we would like to have a few more

bits in order to use the second method, If we don't have them we may have

to go to a good deal of trouble to get our function accurate to our working
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Almost all the elementary Fortran functions get into troubl-e for precisely

this reason. Consider A**B, which is usually computed as exp(B log A).

Suppose A 4 1 and B is huge so AB is also huge. Then ,log A and B
rs

will, say,. at best be precise in single precision, so their product is

accurate to 1 ul'p in single precision. Now the logs and exps are generally

wi th respect to the base of the machi ne. The i nteger part of B,, Tog-A. wi,llT
be removed and used as the characteristic of AB. If B' log A, is large,

the mantissa may have few 'significant figures. But it is sol.ely themantissa

which determines the significant figures in the final result. Consequently

the final result may be accurate to much less than single precision. Clearly-

we need extra digits, equal in number to the number of digits that could

be occupied by the integer part of a logarithm of the largest number epre-

sentable on the machine. Then,we can guarantee that A**B will be correct

to a- few ulps in si:ngle precision.

What is the meaning of all' of these considerations for the hardware

designer? He must understand the level of accuracy his users will want.

In order to get single precision accuracy the user will need, if not com-

plete double precision, something close to it.

Double precise products and sums and differences of single precision

operands have to be developed anyway. They might as well be convenient for

the user to access. Quotients are more difficult but at least a remainder

should be supplied, as on an old mechanical desk calculator!

The organization of the 7094 was similar to what we have sketched. We

could even ask for a bit more than double precision in the accumulator, as

in the GE 635. Unfortunately there was no single instruction for storing

the extra bits.



The machine designer who has put the extra bits in may now be amused

to discover that the language designer has made it difficult to use the

extra, bits in higher languages. In most theories of types, "reai" and

"'double" are completely, distinct entities which hzpen to have rules for

converting between them, The concept of using a few bits of double preci-

sion in a single pecision operation has yet to be iticorporated into such

theories.

Seemingly we must design the hardware, the language, the compiler, and

the operating system (to handle overflow, etc.) together from the ground up!

We will have to leave the reader confronted by this grim prospect.

L

I.
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12. INTERVAL ARITHMETIC

We have by now seen enough to be ready to avoi'd error analysis whenever

possible. Certainly users ought not to have to, dO error analysis. As'-

computer -scientists it behooves us to investigate whether it can be done

automatically to avoid the staggering cost of manual error analysis.

The first itep in this direction was called significance arithmetic.

Basically, machine numbers were allowed to be unnormalized, the number of

zeros on the left indicating tbe uncertainty in the number:

t

.000 1 + 2-t-l

f~w~j~ ~ 1 3 l ~-t-l

2' .00oo0 2 2

Then each word actually represents an interval.

We have to construct rules for dealing with such intervals. The rules

were worked out by N. Metropolis and R. Ashenhurst. There is a choice between

intervals that are poss-ib-I-wider than the desired interval,, and intervals

that Aie possibly narrower, because most intervals can't be represented

preciB ely in significance arithmetic, e.g. in 3 significant decimal arith-
metic,(02.0± .05) (05.0 .05) =  10. +* 3525 ; should we substitute

010. ±.5 which is too wide, or 10.0 ± .05 which is too narrow? The opti-

mistic point of view i-s to choose an interval that is sometimes slightly

narrower than the most appropriate interval. Examples can be con.,tructed

where this policy will give no hint that dreadful errors have occurred.

The pessimistic approach is to take an interval slightly wider than the mcst

appropriate one. Then you can get error bounds so unr6alistically bad that

they are ignored.
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Interval arithmetic contains all the intervals of significance arithmetic
- plug, many more, and so is more powerful and flexi.ble. We are familiar with

interval s from mathematics-:

if a <b, (a,b) = {x: a < x < b}

Arithmetic on intervals is based on the idea of a Minkowski sum:

[a,bj+,c,d]= {x+y: Xe [a,b],, y e [c,dj} = [a+c,b+d]

and in generdl1

A op B {a op b: a e A. and b e B)

where we use capital letters for intervals. In all cases we only need to

know the endpaints of the operand i-ntervals to get the endpoihts of the

result interval s..

Naturally the ffrst questi.on to arise i~s how to deal with round-off.

When an endppint of the result interval, is not precisely representable we

widen the interval as little as possible to the next machine number, so that

we take a pessimistic point of vi(v, but less pessimistic in general than

for signi'ficance ari-thmetic.

We can see that the following operations are going to cause problems

(using 5 sig. dec. arithmetic):

Good Bad

[2,2].[2,2] = [4,4] [2,2].[2,2] [3.9999,4.0001]

[1,1]+ r-I0-30,0 30) = [,99999,1.0001] [1,1]+[_10-30,1030] = [l,]

or [.99999.1]

or [1,1.0001]
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It's pretty hard to get software that will get the good result in both

computations. We ,would seem to need hardware that offers the -choice of

rounding to the left or to the right, under program -co;trol. Such-.narckare

is not usually available so most interval arithm'tic, 'generates an unnecessary

spread on nnmers that should be exact.

Triplex arithmetic was invented to ameliorate this problem and to

econbmize on, storage. Intervals are represented by midpoint and a spread,

as the following -correspondence shows:

[a,b] ~a+b a-b

This system works well on small intervals but poorly on large intervals.

If x t 6 the small end of the interval can't be represented very well

because of cancellation. Then if we take the rpcir Yrcal P,-s,uch an interval

it becomes rather uncertain. Generally interval ari$Chmeti'c is more effec-

tive. The computation is the same because the endpoints of result intervals

tust, be computed the same way in either case. The advantage of triplex is

if the intervals are all, small, then less storage may be required for 6

than far x.

To secure this storage advantage you must give up something important

uf a practical nature. We would like to use the built-in two word double

'or complex handling facilities ofstandard Fortran compilers to implement

interval arithmetic. Then we could avoid rewriting much of the Fortran

compiler.

There is one more problem with intervals in general, and that involves

I. ,#' reciprocals. Certainly 1/[1,2] = [ ,1]. But what about 1/[-1,1]? This

would be (-i] U [l,v-). We can handily write this as [i,-l]. That is,
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we interpret [a,b] as (-,b] U [a,-) when a > b. Then -the system of

intervals is closed under rational operations. This amounts to discarding

our conventional view of the real Triumbers in favor of a circle with one

-l 0 1

infinity (a subset of the Orojection of the complex plane onto a sphere):

00

0,

We will need' some new symbols. For the interval containing all the extended

real numbers we have

For the point - we have

Then we have an indefinite Situation for 4 = [+o,-c], which is not a valid

interval.

Clearly we will' need a machine representation for infinity. These con-

ventions will enable us to avoid the nuisance of most of the usual implemen-

tations of interval arithmetic which lack the complementary intervals contain-

ing .

We see that our definition of interval operations makes a closed system

when exterior' intervals such as [l,-l] are included, provided we make proper
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conventions-concerring and Q.

Some of the axioms of normal arithmetic are not preserved in interval

arithmetic. For instance, only a sub-distributive law, holds:

A-(B+C) C A.B + A-C

Likewise

B+Cc + C

Equality is occasionally achieved in these laws. -In the first case, when

(1) A is a real number [a,a]

or (2) B-C :[0,O] and - A

then A.(B+C ) = A.B + A.C (exercises for student).

There is also a kind of sub-cancellatibn. That is,

j A B D and (A-B) - (C-B) D A- C

In both cases equality is achieved when B is a real number [b,b].

Different theorems have to be discovered and applied to interval arith-

metic. There is, for instance, an inclusion monotonicity theorem:

If ACX and BCY then A®B CX®Y for any

operation @ e {,,,}.

We also have to replace the total ordering of real numbers by a partial

ordLring of intervals. It is difficult to formulate a satisfactory ordering

of overl'apping intervals, or with any exterior interval.

More about interval arithmetic may be found in:

E.R. Hansen, ed., Topics in Interval Analysis, Oxford University
Press, 1969,.
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W. Kahan, Notes for University of Michigan Summer' Course, 1968.

R. Moore, Interval Analysis, Prentice Hall, 1966.

K. Nickel, "Error Bounds eand Computer Arithmetic," IFIP 68
Proceedings, pp. 54-62.

Interval Arithmetic Functions

We have seen that interval arithmetic possesses a number of peculiar

properties. One systematic approach would be to invent a new kind of alge-

braic structure-having these properties, and then deducing theorems about

such structures, in general which of course would apply to interval arithmetic.

Such an approach :would, indeed, be looked upon with favor in many-rmathema-

tical circles, but ovr purposes will be better served now by turning to an

examination of the problems involved in defining functions whose domain and

range are intervals.

Let us start with the simple set of functions f(A) = An for n a

positive integer. We could define An = AA-A...A n times. This causes

an unrealistic large spread in the size of the interval. If we define

instead

An E {an: a 6A)

we find that

An C A.A.Ao A •

If A = [-l,l] and n = 2 we find A2 =JO,l] and A.A = [-11].

We are going to have to differentiate between functions and the

express ons for computing them. For real numbers the difference is rarely

significant mathematically. For intervals the situation is totally different.

Consider the three expressions

E X E- xN:x)(Y E 2

x +y x.x+y.y
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These expressions are all representation for the same rational function of

scalar variables. The last is best in the case -x y = 0 because, as

x 0 O, E3 -+O regardless of how y behaves.

But.now suppose x- [0,0] and y-- [0,01. Then E = E = S1. if

we-evaluate (y)2 as. (4)() we get E3 = LQ. But if we do it correctly,
Ye Y3

we compute

1 + (1)2 [I,CO]
y
2, [0,2]

I + (y)2

%y

L - [o,0[-,Il] = [0,0

The single point [0,0] is certainly -an improvement over Q.

This example demonstrates that it is pretty tricky to define interval

functions except by stating their interval expressions. Then interval

expressions which would seem equivalent in scalar arithmetic will often define

different functions in interval arithmetic, and moreover it is often difficult

to determine whether two interval expressions define the same function. To

discuss these issues systematically we will write scalar functions as

f(xl;x2;...;xn)

We identify the rational expression easily with the function. Then we define

SF(X lJ;x2;- .;xn)
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Ps what we get when we substitute in the expression for f the intervals X.1

for the vriables xi . We also need to defihe--the rapn of the function f

as

Rf(X ;X2 ;...;X n) -U f(xl;x2;...x)1 2 n x i ex i  x2- n

Now we have a theorem generalizing our previous monotonicity result:

,Rf(X ;X2; .; n  -__F(XI X }.. X )

The strength of this theorem is that it is independent of the expression F

used for f.

For rational functions we can prove. the theorem by induction. Then

other functions of intervals are defined to s'atisfy this theorem.

The Independence Phenomenon

What we would like to do is always compute with the expression that is

equal to the range of the 'function for every argument. Then our intervals

will not expand unnecessarily. Such an expression-sometimes exists, but

sometimes does not.

An example where a solution exists is in the case where

W 7 - -- 71

+-

Then -(X) (x)= 1+ These interval functions are distinctly

different and

R(X) = @2(X') 'S _l (X)

The variable , occurs in the second expression only once. When we evaluate
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I(-X) we actually evaluate i(X,X) where ip(X,) Y . that is, the two

occurrences of 4 are independent, sq that {t,r.) This is .calted

the Independence Phenomenon.

We can visualize what is happening as something like:

;I.

/

/ /

The Square domain in the 4n plane represents all the values that could be

used to compute *(t,h) with t e X, r 'e X. The values of the function

h as it ranges over this donain are represented by the floating curved

surface,. The projection of this surface-on the axis is M. The

line segment subset of the, square domain is the set of values that t and

q could actually obtain -- namely those where 4 n. Their set of values

P(4,4) is a line segment subset of the curved surface. The projection

02(X) of p( ,4) is a subset of the projection el1(X) of (,n)

There, are other aroblems besides the independence phenomenon. Remember

we ar. trying to find a rational expression which gives the same result as

the range of the function we are trying to compute. Suppose, for instance,

we have a cubic polynomial on an interval in which the maximum and minimum

are defined by -he derivative vanishing rather than the endpoints:
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JRf(x)

x

Let us suppose this cubic has integer coefficients. The cd-ordinates x,

such that f'(x)-= 0, are defined by solving a quadratic-equation with tw6

real roots. In general, these roots involve surds and are irrational.

Therefore f(x) at these points will also be irrational numbers. That -is,

Rf(X) has irrational endpoints. In genera-l no rational expression F can

yicld the correct interval.

That is not to say that we can't come arbitrarily close. We r-n chop

the interval X into a number of parts. Let

N
X:UX.

Then

Rf(X) = URf(X.) C F-( )
j 3 ,

We claim that if the function is reasonable and the Xi are chosen small

enough, say a few ulps wide, then F can be chosen-so that U F(X.) is

just a few ulps wider than Rf(U X).

We will outline a justification for such a claim. In general, a function.
f(xl;x2; ...;xn) has many corresponding expresions F(X ;x";...;Xn). We

want to find an expression where each x. appears only once. if it appears

more than once, give it several different names and increase n. We will

consider the ramifications of this later.

Now we would like to assume that f is differentiable and that the



intervals X. are so small that they are infinitesimal, which means

X {x.+ dx.: Jdx1 < dp.}

Then we find that

;".;X)= f(x ;x2;....;x + U dx

We have in mind a box as the domain of f:

x1*1

2dol

2dpl

The point x;x2;... ;xn is centered in the box, a rectangular parallelopiped-.

Then Rf consists of all the values f can take over the box domain.

Clearly, then, for aly large rectangular parallelopiped domain, we can break

it up into many infini ;esima'a boxes. Each- box determines an infinitesimal

interval of the range of f. The union of all these infinitesimal ranges is

infinitesimally close to the range of f.

Clearly, part of the technique of interval arithmetic is the division

of intervals into smaller parts for analysis. We don't want to do this any

more than necessary. We will take advantage of monotonicity of functions

wherever possible so we can just tAke the values at their endpoints:

F-''- " " i mmJ . wi , !iwJ MmI•m I!Jm i , _ a
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./ ,-1.. ,."=

In this example we have three monotonic intervals and two uncertain ones.

Since-,we replaced multiple appearances of a variable with several

independent variables ranging over the same interval in an uncorrelated

fashion, we should investigate what widening effect this has upfon the intervals

we Compute. As an example we could have

O(x) -- & = f(x,x) , where f(x,y) - x

2+x 2+y

Then the range

X(X) C ~ =.

In general the interval on the right is wi.der than the interval on the left.

To start to see why this is so, recall that the statement

Rf("X,Y) = F(X,Y) = X
-2+Y

is true if X and Y are actually independent variables. But

Rf(X,X) C F(X X)

We have seen that in special cases we can rewrite 4 so that equality holds.

In general a rewriting is not practical or possible so we need to see

how much wider the intervals can become. Suppose X is an infinitesimal

interval:
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X X + [-d,dp]r

Then when :e can perform a Taylor expansion of f(x,y) in each variable at

I' the point ('x,x), we get

F(X,X) = f(x,x) + (I (x,x) + I44x,x)f)[-dp,dp]

Note that the expansion i performed before we substitute x for y.

'We want to compare this with

R (X) = *(x) + &j(I[-dp,dp]

Since t= (af+ f(x,x) we can see that

d6 -ax~x)j jyX ) =x f
so that Re(X) c F(X,X),. In the particular example l,(x,y) x >0

Txf <0

and -f < so we would expect some cancellation if x and y- were properly

correlated. This a.nalysis shows why distributive laws and cancellation

laws fail: certai interval variables appear twice and are tiot !properly

correlated.

To cure the problem requires symbolic analysis which can't be made

routine. Sometimes monotonicity properties hel'p, so that we can evaluate

the interval function by evaluating the scalar function at the endpoints..

Sometimes the extrema are useful. One su.gqestion has been to transform the

function with a midpoint expansion,, as follows.

Suppose, then, that we want to evaluate R (X) for some 0(x). We

could let

X =x + [-A,A] .

Then we could consider the Taylor series or the divided difference expression,
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In the later case

-, (x) =(x o) + (x,;o)(X-Xo)

Suppose we tan do the division in the divided difference explicitly [1].

Then we can write

(x) (xo) + ( -+

Then the width of the interval in the range is some multiple of the width

of the interval in the domain. .e hopefully can find an expression for 0@

which computes a.,narrew interval for a narrow 'interval argqnent. There are

theorems which indicate when the interval obtained froi D('X) above is

ti:ghter than that obtained from

() M (x)

If * is, for instance, already a divided difference we can expect

trouble from this scheme if we can't do the division symbolically; then we

might di'.4ide by an interval containing, zero. Therefore we need a sophisti-

ca'ed symbo-iic manipulator at execution time. One of the better implemen-

tations of intervwiTarithmetic was at the University of Wisconsin by Moore,

and iVt contained a symbolic manipulator. He wanted to get error bounds for

systeise of differential equations, To get the advantages of interval arith-

metic he had to limit himself to differential equations that can be expressed

in terms of rational functions. Then theo computer would symbolically

differentiate the rational functions, not to get better interval arithmetic

but because the partial derivatives were needed to compute the error bounds.

His differential equation solver never worked properly, however, as it gave

utterly pessimistic bounds.
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What Can You Do With Interval Ar.ithmetic?

No one ,else has gotten good results from interval arithmetic. There

'have been same results by the group at Karlsruhereported by-Nickel. They

are rather handicapped by lack of a synbolic manipulator.
Let us see what kind of theorem they can prove. In particular, consider

the solution of some equation f(x) = 0 by Newton's method. We want to

find r such that f(&) 0, and, we assume that such a e Xo, -our iniftial

interval. Then, with xO e X as a start, let
0

F(x) f(x )
o = X X1  x o -Tr-T X

K Here F is the expression one gets by simple substitution of the degenerate

interval for x0  in the expression for f(x), F(x ) would be a scalar

Fexcept that roundingferrors will be incorporated into the computed intervals,

widening them into non-degenerate intervals, F'(X ) is obtained bysubsti-

tuting the interval X into the expression for f'(x).

What could wesay about such an algorithm? The usual Newton method

yf(xo)
yields x1  Xo0 f(x. Then x1 s Xl, even with rounding errors taken

into account. We could take this as the defini-tibn of the xl to use in

the next step of the interval scheme.

We can prove that if e Xo, then e X1. First, notice that for

purposes of this proof, we can replace F(x ) by the scalar f(x ). This

only shrinks the size of the interval we compute. Our second observation

is that

f(E) = 0 f(Xo)+ (t-x )f'(n) where n is between and x

0 00

and is therefore in Xo . Then
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X0 - X 0 C X o- Xj Q.E.D.
0 0

We had better i nquire as to -,hat happens when F'(X o) infl udes zero..

The Karlsruhe solution is to kick off the user, since their system lacks

exterior intervals.

The alternative seems to be to replace X1 by

Xl Xl n X°

Now every root in Xo- also lies in X~, by repeated application of the

previous argument. Therefore every root in X lies in X1 n x-.

If the intersection is empty,, we can be sure there was a, mistake in
the hypothesis E q X . Otherwise we just continue our computation with X.

If X= X0  then we have squeezed all' the information out of this scheme

that we can, and we should- perhaps divide up the interval into smaller parts

and work on them separately. Otherwise X1 C X0 so we 'have made some progress.

Unsolved Problem. If X I f0 and E # XOf is there some other root .in X1?

In any case, we would expect the intervals Xi to get smaTler until

an interval representing the accumulated rounding error was reached, However,

if there are two roots the final interval may contain them'both. In this

case we, might have

X 0

X1 - (an exterior interval)

VT

Then the question for the programmer is to decide how to handle the pieces.
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He should investigate both parts. If any part. eads to o, ,uli! set, he can

conclude that no root was ,in that interval.

Nicklel 's scheme lacks exterior intervals and there00or does not coiverge

in some cases. We examine such an example noW.
l 2

Let f(x) = x-+-x which also defines F(X) by substitution.
3+x

He Used the iteration

F(x n)
=n xn"

Xn+l = center of Xn+ 1

He neglected to mention what expres.ion he used for F'(X). We can- think of

at least three:

1 1 (x2 1), +8(x-l>12

+f'(x) = l+g(x) g0 (x) = 2-- 2 2
(92+3)

gl(x)= 28+1x'I 2

1- (1- 4

2(x) 8x22 (x+3)

All three expressions gi(x) representthe same rational function ofa

scalar x, though they lead to different interval expressions Gi(X).

Now, how much wider is Gi(X) than Rg(X)? The answer depends on the

interval X. If X= C-1,1], then

G O =1-41

GI(X) = [I,4J= Rg(X)

88
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i general thise expressions are optimal over different intervals., We find

R*(X) P 0(X) if X C [0,)I

= GM(X) i, X C [0,1.) or X C [-,-I]

C Gi(X) ;for almost all other X except degenerate
intervals and [-i,1] i = 0,1,2.

It is interesting that the xpression g1 was manufactured to work, [-,1]

but it is no longer equal to Rg(X) if [-1,1] is perturbed by any amount,

no matter how small.

Nickel actually used G2 so his scheme was

F(x n)
Xn+l -- Xn+ l - +G (Xn)

He claimed that his scheme converged quadratically with respect to the end-

points of the intervals, for any starting point, until stopped by rounding

error in F(x n). Kahan discovered that the scheme blew up on X = [-1.2,1.2)

because of a zero divide. If their interval arithmeti-c had been closed under

division they would have been able to get quadratic convergence from any

starting interval.

By mixing interval arithmetic and ordinar-y arithmetic the Karlsruhe

group is able to get guaranteed error bounds on results. As we have seen,

the techniques are not mathematically deep, the only heavily-used theorem

being inclusi'on monotonicity. The one other important useful technique

would be symbol manipulation.

It seems probable that technological users -- scientists and engineers

-- would benefit more from a good implementation of interval arithmetic
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within Fortran or Algol than from any other change in those progranining

languages that anyone would consider plausible. The few installations where

interval arithmetic is available at all usually offer it only as subroutines,

:but itought to be built right into the Fortran compiler as a standard data

type. Perhaps the persons responsible for compilers are too busy producing

new langueges!

Probably the biggest problem in a convenient implementation is that a

guard digit and a sticky bit are really vital to keep the intervals from

growing unnecessarily.
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k13. WHAT CLAIMS SHOULD WE-MAKE ABOUT THE PROGRAMS WE WRITE?t

We ilow imagine ourselves to be writing library programs-for the use of

others wh may not be adept in numerical analysis. We would like to know,

,what claims we Might be able to- make about the programs we write,, and what

claimwe should make. After all, when we studied hardware we found that the

difference betWeen the claims (a+b)(l+y) and a(l+a) b(l+B) had substantial

implications.

The most straightforward situation is illustrated by the SQRT routine.

,We-would like to claim that SQRT(X) - / if x > 0. (The case x < 0 is

d-iscussed in section [6] on execution time diagnostics.) Clearly this is

hopeless because certain representable numbers have non-representable square

roots. Perhaps we can state,, instead,

SQRT(x) = + ulp if x >0

Exercise: Show that an algorithm could be devised to deliver this

accuracy.

In real comuter s there are always numbers whose square roots are

extremely close to just hfatlfway between representable numbers. We would

have to <compute many more digits than we wish to keep to decide between

cases like

XXXX.49999997 which rounds to XXXX, and

XXXX.50000001 which rounds to XXXX+1

We shall see how these problems are handled in the Toronto 7094 routines

written by Kahan. To keep the cost of computation reasonable, they guarantee

"See also W. Kahan,'The Error-Analyst's Quandary", Computer Science Technical
Report #8, University of California, Berkeley, 1972.
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SQ"T(x) - _ .50000163 ulps

The 7094 had only 27 bits of precision so the subroutine clearly hd to compute

SQRT to about 100 ulps in double precision to ,make such a claim.

In the 7094 there are eight characteristic bits and 27 integer bits.

Counting, only positive normalized numbers there are 234 different numbers.

Of these many just differ by a power of four and are therefore essentially

similar from the point of view of the square reot routine. Of these 2

numbers, for 29-2 7 the error exceeds Iulp.

Having ldst the attribute of ulp" we should' see if certain other
valuable properties of the square root function remain. true. For this parti-

cular implementation, monotonicity is preserved. Also, the square root of

the square of a number, whose square fi:ts in single precision, is the original

number.

Further, SQRT(-X**2) = ABS(X), provided overflow or underflow didn't

occur. A similar test would:be

(SQRT(XY)**2 = ABS(X)

but this is an examplp of an impossible demand to make on a square root

routine. It is, after all,. in the nature of a square root function to map

the set of representable ,positiVe numbers, onto a much smaller subset:

7--]
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This means that at least twodistinct x have identical computed square

roots. Consequently the square of this computed soare root could be o.ne

or the other but nAot both.

Concerning the claim SQRT(X') = ABS(X), one could proceed by direct

calculation, checking all the relevant inputs, which numbered about 227

in this, case. Instead a mathematical proof was worked out. In general we

would hope that comparable claims could be proven for other subroutines, or

at least that comparably rigorous proofs could be given for lesser claims.

Other Functions
It gets more interesting when you consider what to do with, functi6ns

other than the SQRT. You, cannot always say that you will compute such
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and such a function to within a unit in the last place. Half a unit in the

last place is not achievable, because that is the table-maker's dilema.

To be ableto compute a function to within 1/2 ulp, it-may first be

necessary to compute it precisely and that may require infinitely many

digits, if the value- is exactly half way between two nachine representable

numbers. To make the correct decision you have to discover whether or not that is
Fotrue. For

the SQRT, any number whose ,square root was half way between 2 machine

numbers would not be representable to single precision; so the problem

doesn't arise in SQRT. We saw that we had trouble only when 4X is very

near an odd square; but it couldn't be equal to that odd square because

4X is even.

It isn't clear why the dilemna cannot occur for, say, 'the exponential

routine. It is possible, although we have every reason to doubt it. Could

you construct an argument X, such that eX was exactly half way betweenz

2 madine numbers?

Question: What is, the significance of a number being transcendental?

Answer: A transcendenI.al number or an irrational number cannot lie

exactly half way between 2-machine representable numbers and-the table

maker's dilemma will not arise. But the dilemma can be arbitrarily closely

approximated.

Question: Using the infinite series you can get to within a half ulp?

Answer: Yes, you can compute them a accurately as you like. And

you know if you compute them accurately enough you can decide. But if you

didn't know that the result couldn't be half way between 2 machine numbers,

you might have to compute to infinite precision, because no error, however

small, would enable you to render a decision

Actually, eX  is a bad example. It is known, I think, that for all rational

X, eX is transcendental (not rational), except for e0 = 1. A similar
result then follows for the logarithm. And similarly for the sine and cosine.
But there could be other values where the issue is in doubt.
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Reasonable Bounds for Other Functions

Let us consider some reasonable and ,plaisible b unds for some other

functions. These humbers are in ulps for routines on the 7094.

SQRT < .50000163

L9G,QBRT < .52

EXP < .77

CABS < .854

COSPI,DSQRT <
< 1.0

SINPI,DQBRTIJ

COSPI and SINPI

COSPI(X is what you. ask for when you want to compute cos(1x)'.

cos(nx) vanishes when x is half an odd integer; the routine does

vanish exactly at those points.

Sgraph of cospi(X)

Y Y 2

The claim that the error is at most I ulp is reasonable, even near a

zero, because we know exactly what the function looks like near its zeros.

cos T(/2k+I+ g k, 3 /6 +

You find out what - is by subtracting half an odd integer (repre-

sentable precisely for integers of decent size), and compute as accurately

The .52 for QBRT is an acknowledgement that it is not a sufficiently impor-
tant function to bother getting a better bound on the error. For this
error, however, I was able to compute all the arguments for which the error
was approximately that big. We'll see how that was done later.



13-6

as you want using the power series.

The reason I'm pointing all this ,out is because for functions'like

co. and sin, even though we know where the zeroes ,are and how the functions

behave near them, the roots are half integer or integer multiples, of i,

and we don't know n exactly. We know it to a large number of decimal

digits, but we can't even represent it in the machine to as many digits

as we know. Thus we are unable to say exactly where the functions vanish.

Computing Trig Functions When 7r Is Uncertain

Let's see how this uncertainty in 7r contaminates our ability to

compute the trig functions.

Suppose I wish to compute sin x. Since sine is periodic, the approxi-

mating function need not be repeated.

Need only consider
this arc in computing',
sin -x

7T

0

What is conventionil to do is to have 4 intervals:

o 9 -
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t -In region 1, approximate sin x by an odd function; in region 2 approximate

F what amounts to cos x by an even function. Each arc is really only half

as long by synnmetry arguments; you build up the whole function by piecing

together these arcs. In order to use these approximations, you have to

reduce the given argument to 1 of those 4-intervals. That means dividing

by some integer or half-integer multiple of n.

F You have to compute and represent:
{ r x .x

or - x or x= integer + fraction

The iteger tells you ,which interval and which sign to use (that's called

- quadraproduction); the fraction says hoW far to move in that interval.

Then someone may say, -why not use a representation that does not

involve this argument reduction. There are infinite series after all.

But look what happens in sin x for a, moderately large argument.

x3 x5
sin x = x - T +- ..

6 120

Say x = lO0. How many terms Will you have to cariry? What if x =,10,000?

The series very quickly becomes useless, no matter how much work you were

willing to perform. It is not because you have to compute a large number

of terms; the problem becomes acute-when you realize that most of the-digits

you compute are going to cancel off.

Computing-SIN 100

What happens for x = 100? You know sin x cannot exceed 1, but

the first term is 100. The leading two digits of 100 have to cancel off.

x 3/6 = 106 /6; that gives 5 digits to be cancelled off. x5/120 1010/120;

8 digits that must be cancelled.
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After this the terms get smaller; but you see you'll have to carry

8 decimal digits over and above the 14 you wanted in your answer. That is

a more serious fact than naving to compute many terms; they just use a do

loop ahd take a few microseconds. But the extra digits require double

precision and that is not aone with A do loop. That takes a D.P. declara-

tion and means the-whole D.P. package sits in core.

Thus, while it is not impossible to do things this way, it is impractical.

Accuracy for Trig Functions

To, make things more interesting, suppose I want to-say my result is

accurate to-within a few units in the last place,-

How close to a zero of -sin x can we come? When you -are close to a

zero,: sin x x (the slope of the graph is nearly *l,),

\.__..-sin x is nearly equal to this distance

zero

'How small can that distance be for numbers representable in the machine?

If you represent numbers to 48 bits, you can, approximate a root to within

96 bits, by a dodge.

You want to represent mT by a number that for all practical purposes

is an integer (it has to be rational in the machine).

mTr P/q q is a power of 2

You are representing iT by:

it z p/m x p, m are each 48 bits



13-9

There is a theory that says if you allow yourself integers of a certaln

number of digits, you can approximate irrational numbers to at least twice

as mahy digits as in either numerator or denominator. -That's reasonable

since you have twice as many -digits to play with.

For certain, abnormal numbers, that is the best you can do. For-most

numbers, you do-better.

We'll justassume we can match the zero to,96 significant bits. Then

you'llI need another 48 bits. It looks like you'll have to carry 150 bits

after the binary point, to tget 47 or 48 that are correct. Not to mention

the digits before the binary point that are going to cancel. Now you see

the -utter impracticality of -it all.

Questien: It appears there are several reasons for wanting to reduce

x., One is the fact that you'1 get overflows. That seems even more impor-

tant than questions of precision.

3
Answer: Of-course, if x is enormous, x would overflow before you

got anywhere. -But that situation could be coped with, by whatever means

you used to cope with multiple precision. If you have to. assign-extra

words to the right, you wouldn't mind assigning a word for the exponent.

More to the point is if x is small; then x3 may underflow and you

may get all kincxcf messages that have no significance at all. In cases

like this, x is already a very good approximation to sin x. If

x = 10- sin x x is correct to soniething like 100 decimal digits.

Question: Can't you tell people something who want to compute things

like sin lolO0? Like maybe to rephrase it?

Answer: I really haven't explained how I'm going to do sin x. I was

only showing why the obvious ways won't work. You need 150 digits to the
*See Hardy and Wright's book on the theory of numbers.
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ri.ght of the point if x is close to a zero, and some interesting, number

to the left if x is large. The conspiracy is getting worse,; that's why

we don't ,do it that way.

Quadraproduction (Argument Reduction)

So we use quadraproduction. That gets rid of needing digits to the

left of the point. But that has not gotten rid of the problem of carrying

digits tb U he right, In some respects we have made that problem worse.

Remeiber, we don't know the value for 7r. -And no matter how many

digits we' put in for 7r, we can't do. the, division, - You compute-

- is at most 1 ulp of the precision-you are using for 7r and

the division. You, are going to commit at least I rounding error in the

division. And you have already made an error in 7T.

You have effected quadraproduction not on x but on x(l+E).. A Iready,

you are computing the sin of the wrong angle. You. can imagine what that

will do if x is close to a zero. You just moved the arguhent. You are

computing for the wrong angle, so you, can't possibly get sin x correct

to ,a unit in the last place for any sort of moderately large argument.

Say you do division to double :precision and x 7r.

You have moved x by a unit in the last place of double precision;

-; the ci',sest x can come to a zero is about 1 ulp of single precision;

/



you still have roughly a single precision word to play-with.

The situation isn't too bad at 7r, 2w, or 31. But how about 105w?

You'll have lost 5 decimal di'gits.

Error in.SIN(X) and COS(X)

How you actually compute the sin is not pertinent to this class. What

is important is that you have to, think about what you can compute in a rather

different way than you might be accustomed to. Namely, that whenever you ask

the machine to compute SIN(X), you can be fairly confident that that is not

what it is going to do.
1

Suppose someone did demand SIN(X) = sin(x)±_+-ulp. Unless' x is
2

restricted to an unreasonably small domain thig isn't possible. The first step

in the SIN routine is to find the fraction - [J" unfortunately the

value of Tr is not available in the computer to an infinite number of figures

so is computed erroneously. For large x the fraction is only a few
X

bits so that any errors in X are revealed highly magnified by cancellation

in 27u

Clearly we can"t compute any more accurately than sin(x(l+ )) for

some small F. Then for x I t the uncertainty in the argument is comparable

to w so the computed result has no significant figures. Fortunately the

first few integer multiples of Tr differ from representable numbers only by

a modest fraction of an ulp in single precision. By using double preci-sion

for Tr and the division -& it is possible to get fairly good results for2wr
x A 100, which is not possible in single precision.

The claim that might be made would be

SIN(X) = sin(x(l+r,))
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Even this constraint is difficult to satisfy for small {, especially in

the region of a maximum:

' -' I- 2- 2 7

I'

I

I
I, I

7_T 2- 13 7r.-2-14w

1 -2-27 is the next smallest 7094 number below one. Suppose we wish

to report a sine just less than halfway between- 1-,2-27 and 1. Then the

natural output is to round down to 1- 2"27, which is the sine ofabout

The number we wanted to compute was the sine of about 2- 14.

Therefore we compute sin(x(l+ )) for 2 1 2" 4 10-4, because we have

rounded the answer to fit in the machine. This value of seems to be

unnecessarily large.

Consequently we limit our claim to

SIN(X) = (l+e)sin(x(l+t)) , 19I < 10-15 (- 1 ulp double precision),

JIl < .52'ulp

it is an inherent feature of the sine function that we must state our accu-

racy in this complicated form rather than in the simpler forms we considered

earlier. Otherwise we would have to make a terribly pessimistic statement

about the subroutine.

Since we have such a peculiar form for our uncertainty, we should inves-

tigate what useful properties our computed values have. For the Toronto

routines it was possible to prove that the difference in the coute d SINE

for two consecutive representable arguments either had the correct sign or

was zero. It was also true that



ABS(SIK(X)) L.O -

ABS(ICOS(.X)) -i 1.0

SIN X < 1.0X -

I - (DBLE(SIN(X).)**2+ DBLE(COS(X))**2)I < 210-8

One reason many trigonometric identities were vety nearly preseived was

!hat the argument reduction -f- was done in a uniform manner for each

trigonometric function. That is, depends on, x but not on the functi:-a

being computed. e, on the contrary, depends only on the function ,value

and not at all on x or on the function,

To make things more convenient for scientists and engineers, the follow-

ing functions are also available:

SINPI(X) =- '(l+e)sin(7x)

cosPr ( IX,)Cs,,x

Then E = 0, because argument reduction involves only integer subtraction.

You could reasonably expect COS(X) to satisfy:

cosUx) = (+~o~~-V

where the is the same as in S!N(X),. jyI - 1, ulp of single precision.
You get the saxe error t because you do exactly the Same division and then

interpret the integer part differently.

SIN(X) and COS(X) computedI for very large operands X may be wrong,

but nevertheless they are the sin and cos of some reasonable argument.

oi-sequently:

sin = tan to within a few ulps
Cos
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Question: If you pass the stp routine a very large argument, the argv-

merit itself may be represented rather poorly.

Answer: That's right. If X is really large and it is at all uncer-

tain (consideri where did X come from, another tomputation maybe?), the

uncertainty in X will cover a-large inferval, and the sin and cos could

oscillate several times in that interval. That does happen. And when it

does, I think the most we could hope for is son*e kind of internal consistency.

Question: Shouldn't there be a diagnostic?

Answer: There is sometimes. But it is hard to say whether this is

an error or not. In some asymptotic formulas, although the sines and

cosines oscillate in an uncertain way, they arfemultiplied by things that

are very small. Such as in, the Bessel functions:

it approaches sin x. People sometimes do have formulas in which they

want trig functions of large arguments. But the uncertainty gets less

important as the argument ;gets larger, as these later terms are a small

contribution to some series.

Question: Wouldn't you suggest to people that they write their own

sine routine, so that the argument is in some interval in which you can

actually compute the sine, using the system subroutine? If they are just

going to get garbage, they should get a result that is essentially zero.

Answer: But it really isn't garbage, you see. The function is only

important where it is big (in the above picture, say), and there you get

reasonable accuracy, sometimes. Remember, you only get troujes like this
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on our machine for x - 2" or so. That's gargantuan. For numbers like

10,000, or 100,000, the sin and cos will have deteriorated a bit, but

this is generally not serious for the applications involved. it is rather

difficult for somebody to go through the analysis that tells him he should

do something different rather than accept the values as compited.

For people who use abnormally large arguments and may not realize what

they are doing, you're right -- they should be given a diagnostic. But that

involves a, decision -- where to araw the line. Should you tell him when

he's lost ali his digits, or only half of them, or ,at? On IBM equipment,

it is customary to) issue a diagnostic when changing the argument by l ulp

can run you thro~gh an interval comparable to ir. On the 360, thit means

x - 1O6. On thle 7094,, x - 1'08. ,My programs don't give a diagnestic. They

jirtt say here tis what you get and if you are worried about it usa the

SINPI and CGSPI routines, for which no dt,,,Jsrt~c is needid. Of co.urse,

for roughly half the machine number argunents, SINPI and- qOSPI give you

+I, -1, or, 0. The numbers are mostly integers times big: powers of two;

thus SINPI and COSPI usually return 0 or +1. But that's alright.

We now have a reasonable way of interpreting what you get and why you get it.

What You Can Expect From Error Analyses Generally

I guess I'm introducing you to the rather interesting notion that

instead of being able to say you have gotten something that is wrong by a.

unit in its last place, it may be that you'll be obliged to say that the

answer you have differs by a unit in its last place from the exact answer

of a problem that differs by some small amount from the problem you originally

posed. And that is normally what is considered to be a successful error

analysis. But even a statement like this usually cannot be made. For

I
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nop-triwial; problems such as solving a set of li.ear equations, even using

a decent numerical method, the best published analyses state that the answer

is the precise answer of a problem :perturbed slightly in nor from yours.

This perturbation may be- many ulps of some elements .- f the mtrix; so this

statement is not nearly as strong as the statement we would like to make,

that the answer is a few ulps from the precise answer for a problem a few

ulps from the given problem. That is, if we solve a system of linear equa-

tions Ax = b in the usual way, we can show that the computed x sati'sfy

(A+AA)(x+Ax) = (b+&)

where IM << IAN, AxI << IxI, IbI << Ib-. But if we generalize slightly

to computing the inverse of A, we find for the result X that-we get:

(1) X A,! ± a few ulps is not true.

(2) AX . I is hot true. AX could be much closer to zero than 1.

(3) (X+AX) = (A+AA), with each eement of M a few ulps of the

corresponding element f A,. and likewise for AX and X, is

not true.
(4) (X+AX) = (A+M) -1 ffr NAM < a few ulps of HAi

HAXI < a few ulps of NXH

miht be true. This corresponds to the assertion we made for the

trigonomietric functions.

Thesis project: Prove that some standard' algorithm does or does not always

produce a result that satisfies condition (4).

The best result known is Wilkinson's:

1(
IIX-A 1 11 <_maxl(A+AA)_ A 11
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where the maximum is taken over A such that IA! < (some number) of ulps

of IAI. 3Some number" drows as n1 / 4 ( lQg n)+constant Numerical analysts

believe this to be entirely too pessimistic -- the eidence indicates that

"some nuimiber" should be nconstan t

The entire situation-sbet iXu-lUStrated by a picture. Suppose we have

the point A in n-dimensional matrix space, and w6 a1l4w.. an uncertainty

4 about A which includes the matrices we consider indistinguishable from

A for practical purposes. Then there is somewhere else 'the point A-l  and

the set of matrices whose inverses are those of points in the ball A+A:

We would like to state that X is a member of the latter set slightly

enlarged by AX:
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S. N

A+AA -

F"'
A's such that X- I is in this set

f // 7 el t \
/ Iii

A-  /

\/ /

/x AX /

' X, the computed A"

is in this set.
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In reality it has, 1y been shown--that the X's lie in a very large

bal, centered on A-1, whose diameter is slightly larger than the largest

drameter of the set of.-,(A+4) -!. Then the A's corresponding to this large

sphere form a somewhat pointed set centered on A.

Experience Seems to indicate that if the condition number NA'IA' II

is not too large -the set ('A+AA)' l does not deviate too far from spherical-

symmetry.

No example has been given of a matrix A whose computed inveie X

was very far from the inverse of every matrix near A. No one has any. idea

how even to construct such a matrix. Nonetheless, no general proof that

the assertion-(4) above is true seems forthcoming soon.

Hw AProximate Are Your -RP-suts

The sin and cos have thus introduced you to the notions (pervasive

in numerical analysis) that you cannot compute approximately the right

answer to_ your problem; you can only hope to compute approximately the1 -right answer to very nearly your problem. If you can do that, people wi-li

say you have used a stable numerical method.

There are exceptions which correspond to rather peculiai' measures of

what we mean by approximately. 'For example, if you examine the quadratic

equation, Ax2 -2Bx+iC = 0, it is clear that A, B and C are pieces of

data. But what about the 2 on x2? Is that datum or part of the structure

of your mapping? If you think of 2 as a datum susceptibl,. to variation,

so that you might have written x2.00000003, then there could be an infinite

number of solutions, whereas the equation in x2 has -only two.

The way that the solutions vary with changes in A, B, C and 2 is

different from the way the solutions vary with changes in A, B and C only.
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So when you talk about a problem very near yours, you -may be fixing things-

that might otherwise have been tJought of as data, subject to variation.

What Should Be Data

In some cases, the issue, as to what should be data and what shouldn't,

is not altogether clear. What zshould be allowed to vary?

- As an example,, I'll talk to you as a CDC engineer or programmer would.

He would say that nobody can ever know exactly what the operands should be

(-I dispute that, by the way). "If you want to- comnute LoG(X), you should

be williing to accept

LOG'(X) = (1+49)1og(X(1+9)).

(That is, he is willing to perturb the argument). You don't know what X

is anyway, so why should you qare if I change it a little bit?"

Remember the graduate student workihg on wing design? [5] He cared.

I twould care a great deal if I, were computing AB. You write it ,as:

AB z EXP(B*ALOG(A))

If B is a large number you find you didn't compute A but rather some-

thing else. If B is large, A had better be close to 1, or you'll

overflow. But if A is very close to 1, and you have to take

log(A(l+E))

where l + is also close to 1, the 1-og can be changed drastic,Tly, say

by a factor of two. Then when you do the rest of the computation, you're

dead.

The engineer would say that's perfectly reasonable because you don't
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know A ant) you don't know B. But you might want to dispute that.

F Should Not Be In Your- APnent,

It isy judgement that the (l+E) ini the log function does not belong

there ecause thLere are perfectly economical ways to compte the log without

it being there. You just have. t be a little bit \careful. it amounts on

our machine to changing statements like X-l.0 to '(X-0.5)- 0.5. In the

first case, if X is close to I the answer may be zero, whereas in the

second case, the difference is taken correctly.

By using a better approximation and a bit more care, you-should be

able to. et a log, function ir, which the '(l+) perturbation term does not

appear. You'll have to agrte that it's preferable to think of the logarithm

without that term.

My argument for w-nting to- get rid of those terms when you can is that

they make the structure very different fromi what you're used to and from

what you expect.

That is-my argument for putting the perturbation in SIN(X(I+ )) down

to double precision. For arguments in the range of 7r or smaller, you

could eliminate 9 by slightly increasing e. We saw that perturbing x

by an ulp of double precision might -change the single precision answer by

a few units in its last place. So you say e is 5 units, instead of 1

and-you don't mention -, at all.

Hirondo Kuki-: "Getting rid of them (factors like the l+ ) gives

you the, strictest accuracy requirement for a subroutine that you could con-

ceive of. Therefore it gives the simplest goal for the programmer to aim

at, insofar as accuracy is concerned. And in some computations, for example

with integer arguments or assuming all prior computations went meticulously
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Well., where there itS no error in the argument, the benefit is real. And,

it is simpler to explain to users. However, it may cost diamond where mere

glass may have served."

Being simple to explain to users 4eems to me to be the most. important

reason (ifp1. Coding the routine Is Only half the problem. The other half

consists of infot;ing the users what exactly the subroutine, -accomp.lishes.
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14. WHAT IS THE BEST BASE FOR FLOATING POINT ARITHiKETI*C?-

It perhaps seems clear that, if there were an outstandingly best base

for arithmetic, humans would have adopted it long ago. The lb:s ten seems

just now to be winning universal acceptance, though thi$.may be an accident

of history. However, if we take the point of view, as We have often done
in this course, that ornard y users should have to learn a little s oossible

about the workings of computers, then base ten would be preferable ,as being

closest to their norii al experience. From other pointsi'of view it is ineffi-

cient of storage, as we shall see below.

Our machines are basically, composed of two state devices so that the

most efficient base is a power of two. In this light we see that since

base ten. requires four bits, it is really like base slixteen except six of

the bit combinations are ruled illegal and are ,nt used, which seems

wasteful.

Let us restrict our attention then to bases of the form 2 Then all

numbers will have a representation of the form (2k )i.f for some "normalizeW'

f in the range 2 < f < 1 -:2 represented-by t digits, 'and for some

i in the range -2'2 < i < 2' -1. Then our word. iength equa.ls the sum of

1 bit for sign., Z+l bits for biased exponent, and kt bits for the

integer part,

as - ExponenV 3 F t -" '

1 +l bits k bits each k bits or less

bit

t need not be an integer but kt is.

The analysis to followv shortly will assume this kind of representation.I Let us pause to consider some other forms:
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1. Noti-ce that On a binary machine our normal-ized nuinbers always have

a- one bit, fi.-the Most sOgnificant position. Since this is constant we could

drop it and save a bit-. But then there is no way ff representing unnormnal-ized

numbers. We could not use unnormalized numbers as a partial remedy for under-

ftow [6. It seems that binary to decimal conversion couldalso 'be hampered.

If we could locate all the presenet uses of unnormalized numbers and implement

them in- the hardware, such a scheme miht be desirable._ (It is used on

PDP 11-45 computers.)

2. Another possibility is 'suggested by the fact that nUmbers of magni-

tude far from 1 occur much less frequently thao numbers of magnitude -near

I. Perhaps by some suitable encoding we could find a way to represent numbers

near one with-only a few bits for the exponent, and numbers far from one

with more bits in the exponent and less precision, which would ibe justified

because they occur Tnf'equently. Urtless someone can prove otherwise we

imagine such a scheme would make error analysis rather difficult. For

instance, multiplying a system of linear equations t:_rough 'by a scale factor

of ,a power of two would likely change the computed result. We would' then,

be faced with the problem of choosing a scale factor to optimize the preci-

sion throughout the calculation, so that the uncertainty in the result is

a minimum.

3. We could also try the scheme in [23 where numbers are represented

by their logarithms ii, fixed point form. One of the cornnon objections

to this scheme is that addition takes a long time. D. Muller, in an unpublished

manuscript, showed that addition in such a scheme could be done almost as

quickly as multiplication in conventional systems. With advances in multi-

plication hardware this may no longerbe true, However, the fact that

precise representations of 2 and 3 are mutually exclusive is perhaps
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the strongest argument against a logarithmic scheme.

Having considered some other possibilities, we will proceed on the

assumption of a conventional format, and inquire as to which are the valuable

attributes in a number representation.

Clearly precision is an Important attribute. By precision we might mean

the worst relative spacing of adjacent machine numbers. For iistance, on a

two digit decimal machine numbers are spaced like:

9-.9

I M Il l IlIi l a - 1 1

-9 .0 O-1 2

9.5

We see that the relative spacing changes, by a factor of the base (from1

to 1 near a power of the base. This argues for a small base, so that

binary is best. Generally, the smallest relative difference is

I1.00000..1 12k__2-t
1 2 21 k -kt 3

I II or I-2 - kt 2

kt l's

and the lar-gest is

kt bits k+2 kkt- 2k-kt-- 2 kt 2

l.O000...l l1 or 1 +2 -

1.0000 . .0

On the other hand, ,we can say with equal validity that the spacing is

always one unit in the last place (ulp)! Of course "the last place" jumps

at a power of the base. The difference in these points Qf view is the

difference between the producer and the consumer. The producer of numerical

routines is interested in routines which are the best among all imaginable
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-on some machine. The best -possible routine will have an uncertainty of
1
:, ulp due to the necessity of rounding to the nearest machirMe representable

number, so ulps are the natural uhilt of measure of precision, and variation

in the relative spacing is an. irmplcit constituent of the word "ulp".

The consumer or user of the routine is more interested in its

relative accuracy, which might be stated as one part in I0I3. After alli

the precision of his iqputs is most likely to be stated in this way. Then

the relative spacing becdies impQritant, since the basE affects the maximum

precision an algorithm can achieve., We will, cons,ider this definition of

precision for the present, discussion.

Besides precision, we: would like to know the range of representable

numbers. we shall express this as the ratio of the largest representable

posicive number to the smallest repriesentable positive number, which is

(2 k)2 I. (1-2 kt) 2k)2z+l
k - (2

(2 ) 2-k

Clearly, the more bits we allow for the exponent, the greater the

range , but the less the precision, for fixed word length. To 'be specific,

the word length w satisfies

w = 1 + (J,+l) + kt .

Now if we define the range and precision parameters as follows:

r = log2((2k ) 2 "k 2 k

p = g( 2kkt) = k -kt

we see that
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1+09 )+ pk= loge "+ p,,+ (k- 10g2 Qw= l+log2 (f +p+k= 1+lo 2 -p (-1g)

If we can specify *p and r aporji then w is a function of the
base 2k. We Wart. to choose k to minimize the amount of storage needed, w.

Then we should examine the values of k- log'k, to determine the minimuin

with respect to k.

base k k- log2k

2 1 1
4 2 1

8 3 1.415

16 4 2

We conclude that the best value of the base is 2 or 4, based on the worst

case -of a jump in precis-ion. Perhaps it would be more realistic to base our

deci'sion o some sort ofiaverage relative precision. For a number of plau-

sible distributions of numbers the best base has been asserted to be 4.

(Brent, (1972) "On the Precision Attainable with Various Floating Point

Number Systems").

We prefer binary over base four because errors propagate in a more

predictable fashion, as we shall see later. Surprisingly, many arguments

are still put forth in favor of octal and hexadecimal bases. In the case of

the 360, base 16 was chosen to reduce the number of shifts required to align

the operands prior to the operation and to normalize the result. Empirical

tests on the 7094 had demonstrated thal .most such shifts were one or two

places, which could be avoided by using base 16.

This conclusion is valid if the time to shift is proportional to the

numbers of positions shifted and if the decision as to how many places to

shift requires no time. This is not generally true. The number of shifts
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required'is detemined~by counting leading zeros and this definitely takes
.o time unless the base, is two, when it suffices to shift until, a one appears

i as the-left bit.
Shifting is often accomplished by choosing which of two sets of gats

between registers are enabled.

One set is a straight trai,,fer, the other shifts in the transfer process.

In the, CDC 6000 machines a tree structure of shifting registers is used which,

at each node, may eithier shift one bit or not shift, so that any number of

shifts can be eventually accomodated. In general, however, the one or two

bit shifts that IBM was worriev about can be accomodated in the time it takes

to transfer the word between registors.

Perhaps some future machine organization will be able t6 take advantage

of such an idea us-ing a base of 8 or 16, resulting in some simplification of

the hardware,, which might save 5% of 1% of the cost of a complete computer,

which seems negligible. Any such scheme will, however, w-ste an average of

perhaps one or two bits in leading zeros, which is a 1% - 3%/ loss in available

storage for normal length words of 60-100 bits. A few percent of storage

costs is a much larger price to pay for a hexadecimal base compared to the

simplification in hardware.

However, the foregoing arguments do not yet supply a reason to prefer

binary (k = 1) over base 4 (k = 2). The following arguments are intended
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to illustrate the main reason for nreferring binary, namely that the density

of relpresentable numbers is most unfform when the base is smallest.-

Error Propagation on Non-binary Machines,

We conside- division. Let-,

Lo
x = value of X rounded to t digits of base b >2, t > 3

y = value of Y rounded to t digits of base b > 2, t > 3,

q =Value of x/y ,rounded to t digits of base b,> 2, t > 3.,

For definiteness, say bt'l < X < bt, so x. is an integer in

bt-l < x <bt and Ix-XI < . Similarly bt - l < Y < bt , bt 1 < y < bt

lY-YI - Now b- 1 < x/y < b, so 'b- <q <b and there are, two

cases to consider regarding the rounding ,of q:

y = 0 b-1 <x/y<l so b- 1 <q<l and I q-x/Y 1 bt,

which is 2 ulp of q unless q = 1.

y 1 1 <x/y<_b so l <q <b and lq-x/yj <.'t
2

which is 1 ulp of q unless q = b.

In either case, Iq-x/Yl <2-bY But we want to bound q-X/YI,

so we must .next examine & X1 We find IL- + ( Y- 1_2/1 +)TO w

Again there are two cases:

Xr <lu/2
y= 0 _ x/y <1 so iy-4i <-(l+l) < b and then

jq -X/YI bt+1 -t - (1 +b~b-t (.T.+b) UIP of q.

"ulp" = "unit(s) in the last place..."

I,
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yl I < x/y < b so 1 < 1,(+b) < J1+b}y&o and then

Jq-X/Yj < Yl+ b)-t 1-t = #2+b)b 1 - t =,(1 +1 ul of q.

Note 1b > 14 since b > 1.

Can these bournds be approached closely?' Yes...Here is how...

First, the bounds upon IL- - can be approached when x-X and Y-y
1 TI II- t-1-

have the same signs and magnitudes near , and y, is close to b

and. x is slightly less than y, in case y = 0, or bt  in case y = 1.

The bounds upon jq -lxyl can b, approached when bt'Yx/y is nearly an
1

integer plus -. To accompli.h this last condition we assume first that

y = bt- +m for some "small"' positive integer m << btl. Then we assume

x = btl +n for some 'small" non-negative n < m in case y 0

x bt - n for some "small" non-negative n << bt l  in case y = 1.

In case y 0 we have

x/y = (l +,nbl-t)i( 1 + mb]'t)

I - (-n)b1-t + (m-n)mb2"2t - (m-n)m2b3 "3t + ... <

Ib t  2-2 -bt;ie
To have Iq-x/yI - it suffices that (m-n)mb t e.

2(m-n)m b with small relative error.
.t+I

One choice worth considering is m b , n m-,- , cd

there are many other appropriate choices, as examples, wll show.

In case I we have

x/y = (b -nbl-t)/(l +mblt) b-(bm+n)bl-t + (bm+n)mb
2 -2t.

To have Iq-xlYj -. it suffices that (bm+n)mb2"2t 7 i.e.
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2m(bm+n) " b with small relative error.
[4 1 tblT

Among the many possibilities is the choice m= b n -b - .2'

Eamle. We use t = 4 digits of base b = 10; case y = 0. Suppose

,= l013.5401, Y = 1017.4999, A = 1000.4999, B - 1006.5001. If we com-

pu _ )using correctly- rounded 4-digit decimal ariih,.-tic, horu much

in error can the computed result be? A naive analysis would, suggest an

error of about .0003 thus:,

Round X to x- 1014

Y to .- 1017 - committing in, each tuase an error

-J-A to a 5 1660 smaller than ulp. -

B to b 1007

Now x/y = .99.. will be in error by about ( + = 1) ulp,, and its rounded

value q:- .99..... by about .- ulp more than that, i.e. by .00015. Simi:-

larly, the rounded value r = .99... of a/b will be in errorby about

2 = ulp. Their difference will be computed exactly, so-we expect

naively that 1t-r will differ from - by at most about .0003. In fact

x/y .99705015 so q = .9971, but X/Y = .99606899;

a/b i,.99304866 so r .9930, but A/B = .99403855;

q-r= .0041, but 7--= .00203044.

The error here is, not just 3 ulp of .99..., but almost 21 ulp! (cf. tw.ice

(2+b) ulp it case y 0.]

On a hexadecimal machine (b = 16) we could, in a similar calculation,

get almost 33 ulp instead of the naively anticipated 3 ulp. Hex is Horrible.

On a binay machine (b 2) we coulW, get at worst 5 ulp instead of

IH irH
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the naively expected 3 ulp. Binary i's .est.

The foregoing examples. are not entirely persuasive, perhaps because

they compare a rigorous and achievable bound with a naively ,mistaken bound.

But, on reflection- the comparison-will not appear unreasonable. Acc at

is not like Virtue (which is its own reward) nor like Beauty (which is in

the eye of the behold2r); rather Accuracy is like Justice (which must be

both done and seen to be done). Accuracy which cannot realistically and

economically be appraised is of disputable value. ["I am confident, though

I cannot be sure, that the number of colors needed to color any map in the

plane is 4.00000..."]

Of course, we could "easily" have overestimated the error in the quotient
l

q s follows: x (= rounded X-) is uncertain by -ulp, as is y

(= rounded Y)o, so their quotient x/y is uncertain by (+ 1)x b ulp,

where the growth factor b allows for the uncertain relative value of the

absolute uncertai-nty ulp. Then rounding x/y to q introduces another

T ulp uncertainty; the total is (b+i) ulp, as predicted for case y = 0

above. But the sam6 argument could be used for a product p 4 xy to show

that p's uncertainty is (b+l ) ulp. This prediction is a bit large; it

is left as an exercise for the reader to show that Ip XY] < (I+ b) ulp

of p, with near equality possible. (And (b+ )/(l +2)= 2--E is an

increasing function of ,b.) Moreover, if xy does not have to be normalized

before rounding, Ip -XY < 3 ulp!

The point of the foregoing arguments is to Show that the propagation

of error and uncertainty is more difficult to estimate realistically and

economically when b ' 2. The difficulty arises when relative error has to

be "converted" to absolute error or vice-versa.



Binary. Is Best, But For Whom? And Does It Matter?

Today's technology suggests that the cost of a central processor is a

relatively small fraction of the total, for the system delivered without its

I/O peripherals; that's the processor" and its storae that doesn't require

human intervention (includes fast storage, extended core storage and possibly

disk or drum). Lumping all that together, it is clear that the cost of the

arithmetic unit is negligible,. So you might as well make it right. It is

the cost of storage that is high, so you should economize there. That's where

the argumeht that larger bases mean better utilization of storage becomes

important.

Another aspect of today's technology, is that you can gain speed by

adding a little hardware at a small cost. Ths may not have been true when

the 360/30.was designed, so you'd want to limit yourself to .mall registers,

and data paths. Then hexadecimal offers the advantage that normalizations

do not have to be done as often (since 3 leading binary zeros are allowed).

The arithmetic units could :be made to look faster, on the average. But on

large machines designed to do lots of f1,ting point calculat-ions, you must

have large registers. You cannot have fast efficient floa ing point arith-

ifetic built up from tiny registers (too much microcode ne(.(s to be executed j.

For large registers, shifts are not such a big chore; the.' don't take very

long so you don't care how many shifts are needed. On CDC6000'macltines,

a shift is obtained iby a tree network in which you have as many levels as

you have bits in the count of the possible number of shifts. If you expect

to have to Shift by as many as 63 places, it requires 6 *evels in the shift-

ing network. The first level shifts 0 or 1, the next, 0 or 2, ,the

next 0 or 4 and so on. You set up gates according to the bits in the

shift count and let things percolate through the tree, which it does in 6
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delay',times (it only requires time to set the gates and to transmit through

the'gates). Shifts are simple; it is more interesting to- count how many

shifts are, requi ed, which in binary is madG more efficient ,by noting that

'most shifts ,are small; so your counter might decode the first 6 bits to see

how many are zeros. If -they are all zerot, you know you shave a more compli-

cated job but that doesn't happen very often. -

I haven't discussed these things. in the, previous section because-l don't

think they are important to today's technology, although they were- important

in earlier times.

The case for binary is not overwhelming, as can be seen. But it does

avoid certain inconveniences in error analysis. The bulk of that incoh-

venience does ndt, fall upon the-users, but rather upon people who have to

provide special subroutines for those users. Most people do error analyses

of only the most superficial -kind, which-is generally adequate, if the number

of digits they are manipulating ;s rather more than twice the number of digits

needod to represent their data. If the number of digits in the machine is

large enough, the base of the machine is relatively unimportant, It is hard'

to believe that binary or hexadecimal as a base can have trans-cendental

importance, since people ,haVe gotten along with decimal for at least a

mi 1 Ienium.

4/

r(
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15. BASE CONVERSION

Arguents have arisen from misconceptions centering, around what you

mean whefi you write down a number; do you mean something other than what

you have written down? If I write down 31415, some people say that,%s an

integer. If I write 31415.,, they say it is from a set of real numbetV:

31414.5 < 31415. < 31415.5

If any nuMber from that set is acceptable, people who do binary-decimal

conversions would be much happier.

But this leads to serious troubles. If you- say 2. in FORTRAN, you'd

be upset ii somebody converted that to 1.99...9 on a 'binary machine; machines

have been 'known to do that.

The difficuTty arises because you try to read too much into a siipIe

string of digits, so much that the string can no longer stand for itself.

This problem became acute in PL/l, where different machines would read

the same code differently. A string might be converted in single precision,

but if you added a zero,. it would be converted in double precision ard trun-

cated,, giving different final results. The bit str"19 representations for

31415, and 31415.0 might actually be different in the machine.

The mistake arises in an inhocent but misguided attempt to read more

out of a string of digits than is put there. If people had said they would

do the conversion to infinite precision (in principle) and then invoke con-

ventions for packing, they would have been much better off. If you write

down a string that looks like a number, it would be considered to be a precise

r real number. What happens to that number when converted depends on where

you want to put it. Floating point numbers come under c,e set of conventions,

integers mder another.
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F If yo u are doing binary-decimal 'conversions, it is necessary to compute

to. more accuracy than is requested, in order to have something to round.

To get single precision, your table -of constants wll need to be to ,double

pr.-ri-= enJ the convertion done with 'double precision hardware and the

result rounded to single precision. Then the job is done correctly except

for those miserable cases that fall halfway-between;oin binary-decimal those

cases can be characterized.

Double precision conversion, using double precision hardware is sloppy.

You really need some extra bitis around and no machine provides those.
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16. AN EIGENVALUE CCOiMTATION DEMANDING VERY LITTLE FROM UiE HARDWAFE DESIN

Our object, in constderUMg specifications for numeical h6rdwaieand

software, is not to mAke life easy for numerical analysts. Rather, it is; to

deteinlne what features Make it least likely that an architect desigping

cathedrals will have to get a Ph.D. in numerical analysis in order to use

the computer efficiently.

However, we would also like to make it possible never to repeat an

ereor analysis of ar, aIgorithm for every new me.)ine that is manofatured

or Operating system that is written with previously unheard-of laws of

arithmetic. Error analysis is such a burden that we should hope to dd it

only ond4.

The aim of this course is to describe the considerations that should

be borne in mind by the designer of a new system or the repaiinan of an

,old one. ".- have seen that certain computations require rather stringent

restraints on the way arithmetic is done. We will now demonstrate that

some complicated calculations require little more than that the hardware

be monotonic.

The eigenvalue algorithm is ,described in a Stanford Report ("Accurate

Eigenvalues of a Tri-Di-agonal Matrix," Stanford Computer Science Department

Report #CS41 ('966)) and in Kahan"s Notes on Error Analysis (1968) for the

University of Michigaii SUnTer School. The input is a real symmetric tri-

diagonal matrix J:
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2.a

b2 a b3  0

j z= bo  bN 0

0 . • .bN~la

All. the eigenvalues are real. A- in a1, symmetrlc matri'ces,, if we

strike off any row and column, the eigenvalues of the ratrix left are inter-

laced with the original etgenvalues:

N EigenvalUes original, matrix, . - - .

N-1 Etgenvalues reduced matrix -
real, axB5

The curve represents the polynomial det(J-,) which vanishes at each

eigenva'lue.

Wewiil~ exploit Sylvester's Inertia Theorem: If J-x - LDLT, where

L is non-singular (it will be lower triangular too), and D is diagonal,

the number of positive, zero, and negative entries in D is equal to the

number of positive, zero, and negative eigenvalues of J-- x,, respectively.

It seems remarkable that the theoremi is true no matter which of the

-many D's one considers. In any eveit We have located an eigenvalue of J

between and . if the nunber of positive eigenvalues of J-x- is

one less than the number of positive eigerivalues of 43-x2 .

Let U = DLT so J-x = LU. Then L is almost always a non-singular

unit lower triangular matrix and U is upper triangular.
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.1 0 u •2

00
UN

We see Ithat the diaqonal elements of U are the same as those of D. Also

note that. these triangular matric2s remind us of Gaussian elimination. There-

fore we sumarize our algorithm as follows: Do Gaussian elimination without

pivoting on J-x to find the factors L and U. bf we dOn't blow up on

di-vision by kero, the number of positive u's is the same as the number of

eigenyalues of J ,greater than x. Then we could use a binary chop to test

val'ues of x to home in on any particular eigenval'ue.

The algorithm for the 'u's is aS followS:

uI, b2a - x

n-I
Un  an -,x , n= 2,...,N

This seems simple enough, but suppose unl -vanishes? We couldfudge things

by perturbing an-] by c so that un1 = e for some tiny e. Is this

legitimate? There, is a reassuring theorem. Suppose the eigenvalues of J,

Xi, are indexed in order so that Al < A2 XN' and the eigenvalues

of J+ M, ,Xi+AJi, satisfy Xl+AXl 5_ 2 +AA2 < N+AXN • The theorem

states that

IAXjI< HAJ1 , j :

for some suitable norm. A suitable norm is HAIl max V ---Rx

By choosing an e small enough copipared to the eigenvalue we seek and
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setting (I = £, we can continue withoutworry. There are ,risks of over-

flow and underflow; the paper discusses these problems. For our present

purposes we will assume nothing-bad will happen if we replace Un-i by a

suitable i.

Our !program lcoks Hke the following,

DO 9 I=l,N
29 SB(I) = B(I-l,)**2 (preparing the b I )

S= 1.0

DO 3 I=1,N

U1, = (A(xI)-)BB(I)IUI.I)-X
IF (UI) 2,1,3

1 UI = -ETA (if u. - 0)
2 v -; v+ I (if u _ 0
3 CONTINUE

(The subscripts don't actualVy need to appear in the program.)

Then v(x) = the number of eigenvalues < x+ETA (?)

if AJ is negative semidefinite so that, for every vector v, vTAiv < 0,

then, AX < 0. By choosing ETA always negative we guarantee thet the eigen-

values are always perturbed down slightly, never up. But 'there is the

uncertainty that eigenvalues within ETA of x could be shifted to either

side of x, so that they could be counted either way -- hence the (?) in the

previous equation. But ETA is usually smaller than a unit in the last

place of the results we are going to quote in the end.

Aside from te question of whether the algorithm computes accurate

eigenvalues, which we shall not consider here, there is the question of whether

the subsequent logic dealing with v could be thrown off because v is
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inaccurate due to ,itnding errors. In the absence of rounding errors, v

plotted as -a functiont of -x will look like

V

x

That is, it will be monotone nondecreasi ng with a jump at each el'genval ue.

A programwhich expected, a-monotonic -v might conceivably: hang up. if v

were somewhere to decrease because of rounding or possibly the substitution

of ETA ftr a O

Our purpose is to show that if we only 4sume that our Arithmetic is

monotonic, then, v will be monotonic despite rounding errors or ETA.

To see this we must plot u as a function of x. We know

JN-x = (. 1 ][2 . I
0 T u J

Then uI'.u2 ... uN det(JN-x) so that

det(JN-X)
uN det(JNl-x)

Then u a1 -x has the graph

Vmm
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1 I

I

I

SI I

[ - It is monotonic, and so is-its, con~Puted value on- any mchlne that has

monotonic arithmetic.

Next, u= a2 -'x- l

'I

This function is monotonic except at its poles, where u1  0. A similar

statement, proved by induction, is also true of each of the other u's; they

are decreasing except for jumps at poles where the previous u had a zero.

Now let us consider computed values:
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B2

. L- (AI- B ' ) " X

~ ~ B2

Clearly this is monotot ic if A - is ronotonic decreasing. ConsideringI

the problem of round-off fi-tv we can show by an induction that, if v~

isiionotone decreasing, then is monotone decrcasing, so AI - L is,
Ul- U

except when, Ul 1 = 0. In this case of zero, we replace 0 by ETA, so

we get an enormous jump. Then the graph of the computed u resembles

'

82

That is, we choose ETA so that no other quotient B 4 formed by repre-

* ,2sentable numbers in the machine can be larger than B1./ETA in magnitude.

Clearly, then, ETA depends on the machine. On thk 6400, for instance, we

choose ETA tobe the number smallest in magnitude but differing from zero,

which has characteristic 0 and a non-zero integer part. The machine must

operate in the mode which tolerates out-of-range operands, because the

divider produces an a* with the correct sign. (The possibility that B1 -1

is zero can be coped with in several ways discussed in the paper.) Conse-

quently any other value of ul., w'ill produce a quotient no larger than
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so monotonicity will certainly be preserved.

So monotonclty in the arthmetic is all it takes to guarantae the

monotonicity, of the u's in this algoritun. We can see that -if x -is increased

then v(x) cannot decrease. Suppose x is increased by one ulp. Then the

u's may decrease a bit. If they decrease and preserVe their signs, the count

does not change. If they change their sign, the count might t e affected.

But the only way a v can go from a negative to a p0s.1tive value (decreasing

V) is for the previous u to go from a pos-tive to a non-positive value,

increasing v. The only time v has a net change is when the, lst u goes

from positive to negative, so that v increases. This is the way to detect

an eigenvalue.

Therefore we can go a long way with this algorithm if the machine

satisfies the simple requirement of monotonicity! Yet even this simple

requirement is not always. assured. For several years the 360 long word

multiplication was not monotonic, before the guard digit Was addod to the

hardware. Then for certain positive X, H, and Y, X*Y > (X+H)*Y. If X

has the significant hexadecimal digits FF...F, then its product with Y

was Y minus one ulp. If X was increased to 1000...0, then the product

formed would be

before postnormalizatlon, and the failure to provide a guard digit lost the

last hexa ecimal digit of Y. The amount of Y lost could be as large as

fifteen ulps.

Likewise CDC's RX* was not originally monotonic, or even conutative.

Nowadays such defects ara mostly limited to software floating p-nt, packages.
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17. HOW MANY SIGNIFICANT FIGURES DO YOU NEED TOSOLVE A CUBIC EQUATION?

Theorems in numericl analysis are often of a negative sort, and prove

that certain c alculations can't be perfofned. Yet correct theorems that

V" seem toa pply to ,certain prblems often do not, as in, the case of Viten'ko's

'theorem,[lO]. Very often the "impossible" calculation -can be performed.
An example of a fruitful area for such theorems and surprising- counter-

Vexamples is in the answers to ,questions such as, how accurate is the result

of a computation if n significant figures- are carried? If its error

analysis does not provide realistic bounds, such a theorem may be misleading

when :we ask the complementary question: how-many significant figures, must
be carried to achieve a desired pro-assigned accuracy?

In particular, we shall study the solution of a cubic equation to

see what precision must be carried to gpt roots correct to single -precision.

In general, we can imagine solving for the roots by an explicit formula

involving the coefficients or-by some sort of iteration such as Newton's

method. f(Xn)
Newton's Method Xn+1 = xn - -n converges almost always to a root

of a cubic equation. Can such a method' get around rounding ,,errors? -Hardly.

'We must compute f, after all. Suppose our stopping criterion is f() .

We will find that many simple functions don't vanish 'for any value in our

machine. Consider

F(X) = ((((((l.,-X)+l.)- X)+ 1.) -X) +1..)

Certainly the function f(x) = 4-3x has a root of .. When we s.ubstitute

4 1 2for X a number near 4, we get approximately - , + ,- - , +, -1, and

0 for our partial results.. Now recall that, on any non-ternary base

machine in the Western world with floating point hardware, 1 and numbers
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near are represehed with the same charadc, istic, so that their subtraction

occurs without error. The result near has zeros inserted on the right

when it is normalized. Therefore, since it was formed from a number near 4

it can-be added to, 1 precisely. 7The digits shifted off and lost, or put

in a guard digit or word, are'aiwas zeros and are of no co;sequence. The

same a.gumeht appb'I*s + ea h of the, six additions and subtractions. lnheach

case a- number forked fkoina a 1 or a, is added to another I or- 4

always precisely, so. that F(X) is always coiputed precisely near '. There-

4fore F(X) = 0 only when X = But no marhine with a non-ternary bass

rean ,present T precisely. Therefre F(X ) j 0 oy' any -'uch Machi e.

Theraffore-, when iterating, we must wait for f to, become negligible or

for the sequence xn to settle down. In the latter case se ,tling occurs

fwher, r is small, rid this may not mean, that f is especlally small.

!Ndead, roundir,_g could cuse the computed' value of f tO, become zero ,at the

ki wrong place.

To see how far wrong roots computeo by' any method could become, ,consider

a. cubic such as

f(x) = x3 - Jx2 + Jx-

where 3 means a number near 3. Then the rMas are 1, Suppose the only

error s is in the last'multipl'ication so that

'Since 1 + e won"t fit in 4 word length, we round it to I so that we actually

solve f(x) A e. Suppose now that we are actually trying to solve the equation

(x-l) = 0 so that instead we solve (x-l) 3 = e, whence x = 1 +e1 /3.

If six figures are carried, eI/ 10-2. The rootmay onlyb)e good to
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one third as many figures as were carried.-

Similarly, if an explicit formula is used and part of the rounding error

is applied to any: of the coefficients, the perturbation in the roots could

be the cub# root of the perturbation to the coefficients. Hence triple preci-

sion siems to ,be required. We don't actually ,have a thoerem here, only a

good argument.

Oddly enough, double precision will suffice,, Thi's. is possible because

computei.s do better than our Model 'bf arithmetic impl.ies! There is evidertly

sor., "hidden order to the arithmetic which we have not explicitly uncovered.

G.W. Stewart IN concluded that there was no way to avoid triple preci-

sion .in athematics of Computation 25, January IS7l, pp. 135-139. To see why

he came to this conclusion, we must examine the way in which -the ill-condition

,of certain cubics is customartily cured.

Usual, Algorithm

The worst cases are when the cubic has nearly a triple root. When 'the

roots are well spread out, nearly, single precision results from a single

precision calculation. When one root is nearly double, the perturbations

are of order e1I/2 which can be handled usi.g double p,'i.sion.

Therefore we want to, separate at least one root fron the other two by

a transformation. One way to d.) this is to translate the origin to the point

that is the arithmetic mean of the roots.. Suppose the cubic is f(x) v c(x- )

-Then we want to find q such that

q(y) M f(+y) t cy 3

Then, ift our roots are still small, we can scale the problem by multiplying

the coefficients by scale factors.



17-4

0 00

1~0 10

VProblem Tranlation Scaling

Unfortunaftlyi the usual method of translation causes rounding errors,

Iwhich leave you as far from a correctsolution-as You wer before!,
Let us investigate what happens. The mean of the roots of a cubic

3 2-af(X)=,,aX + al + a2x + a3  is just E = IT1 The usual way of computing,

the coeffici'enftt of the ne oyoilg(y) = by 3 + bly 2 + b x + b3  with

We~ can write f(x) in terms of the b's and as follows:

f(x) = ~ajx3-"'

3 
3jI (b C~bj 1 (x3J (b_ 0)

j=0

3 3-j -
j=0 3  k=O k

=b 3 + (X-0) 2
3 j-0 i

Then b3 =f(C). We think computationally of an arrangement such as the



17-5-

following (note the re-definition of the b's).

b0  a0
bi 4bo  b" 7vE + bib=b 0 a1 bp 0  b -1

bj =b i + a2  b2 = tb + bi 51 -bo +'b!

b3 -b + a3

Then f~x) = f(f+y) = boy- + b 2 + b2y + b3 . We would use this recurrence

because we expect the coefficients to be smail near a triple root. After

all, b f ff ),, b 2 and they would all be zero at
a triple root.

Unfortunately 'rounding errors interfere in substatial numbers. Consider

the equation x3 - x2 + 3x- 1. Then l1. Let us see what -numbers are

generated.

b 1
0

b4$-2 b ' -l b1-1

b l b2 t 0

b3 A. 1 1 0=

We see that bl, b2, and b3  are primarily composed-of rounding errors

revealed by cancellation! Our coefficients have been perturbed by rounding

errors of order e, so that we can expect the roots derived to have the

usual 61/3 uncertainty!

Stewart shows that the polynomial computed this way is not f(y+7) -but

is instead g(x) where

(~f(x+9)- g(x)l < ftlfl(Ix *I+M)



If-I is the polynomial obtaihed by replacing all the coefficients b1  by

their absolute value. Ideed, it is ogyly realistic to suppose that the result

of cancelling large computed n unmbers will only reveal' their accumulated

rounding errqo-. Hence, we must use triple precisior- with this algorithm

to get single,precison -roots.

Kahan Algorithm

Much to our surprise, there is an algorithm, little different from this,

that allows computation of singly-precise results using ,only double precision.

Let

Q(x) = aox3 + 3 + 3ax + a0 1 2x +a 3

Q(z+-) = bhz3 + 3 1 z2 + 3b2z+ b,

(z+J = x,, where p is the origin shift). This rewriting is convenent,

so that our new recursion is written

bo = b1 a o + a, b = alp + a2  ag +

= b1 + b: 3i= b .1 +

b3  b2l + b3

Let us try this new aljorthin on the previous exanple. Then ai - 1 and

- -1, Thus

b 1 b 0 b 40 b 0
0

b2 0 b O a 0

C l--4s 0

Cancellation is done first., so there is no rounding error to reveal.



Then arithmetic is done ' the cancelled results. All the products are done

with near-zero operands exceDt aq , which-can be held in double precision.

When ap fis performed, the product may occupy as much as double preci-

sion. The single precision part wlli cancel outhenf api 'a 2 is computed,

eaving either zero or a smal1" number that was in the double preclsitwpart

of the product. By cart'ying double precision throughout we can nearly get

single precision results in the end. Actually a bit nk.re than doublepreci-

sion is necessary. To avoid fj!is, choose p to be zer6 in as- many bits as

possible at the right, so that the effects of rounding products are postponed

as late as possible.

The algorithm we will use for choosing p is to look at the successive
'a'.

quotients p.i (Then'

p2  - ,. whenever alY, C

l3 = iE22+C 2C3 +C 3E1, '-.

Now we find a number which matches as many of the leading digits of the 11's

as ,possible.

k P

Pl XX a b cd

112 XXefgh

13  XX i j m n

Then p matches each pi to R digits of the k-digit word.
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When we compute bl = aov+a 1, 'aojs will match -a, to k, digits,
[0

so the result b has atgmost about k digits. Hence b1 , L, and bi

wiV1 all fit in a. single word. We can't be sure, what happens nextj but we

-khave reduced the rounding'error in the coefficients by 10- .

We have redced r'ounding errors by losing significance! As the roots

become closer together, the algoritu-oeks better at shifting the origin

with little error.- A proof of this, assuminh the roots are sufficiently

close together, is ,given in, Kahan's Notes for the Sumer Institute at the

University ofMichigan, 1968. -This proof is bad because it assumns something

we don't know ti advance. It's prSsible for the 1'S to agree to k digits

while the roots only agree to 13k.

Thesis topic: -Discover quickly a satisfactory and :rigorous. proof of this

algorithm.

Examples

Let's consider a- few examples. Let

Q(x) = 353X3 - 984x2 + 915x - 284

and we shall carry three figures in single precision. ii = .93, and, the usual

Hornet scheme yields

o = 353 (%1 = -984 a2 = 9l5 a3 -284

Bo = 353

O= -655.71 al=-327.42008

02 305.1897 1 = 000.6891 $1=008

133 = -000.173579

o3



For the lts-t subtraction, we _needed nine digits, i.e. triple precisioi, of

which three digits cancelled. Had we carried only six figures, instead of 9,

-we should have gotteh 0 3 i:-000.173 or -000.174, with a error equival.eait

to iperturbing the ,coefficie4lt 284 by about 56- 10- 4 , or a relative t.rtur-

bation 3af about i0F6 . We wtiuld run the isk of getting only two significant

rTgUres correct in the rqots, In the second scheme.

al = 353 a, = ,-328 a2  305 a3 = '284

b - 353 b = 000.29 bj i -000.04 bj = -000.35
0 1

b= .k.7 b" = ;.3872

b 3 = _-.173579

Six digits {double precision) was enough to get rthe co7ficients precisely.

It would'seem that the ul.'S agreed to two figures,, 2 the roots agreed to

-but one-j being 1 and .8937677 ± :0755768i.

Perhaps a more typical example would be

Q(x) = V -813x" + 13449x -- 2212111

Then the zeros are 90.1150133, 90.44?4934 ± 1.6439023i -- agraeement to

one figure. This cubic is very sensitive. If we change a3  to 2212110,

the roots become 90, 90.5 t 1,6583124i. A change ot five parts in 107

changes the roots by one part in O0

If P = 90.3, then Q(z+) = 3z3 - .3z 2 + 8.Oz + 1.5111l. Homer's

scheme requires ten digits for precise coefficients, while the new scheme

requires eight. The new scheme wasn't particularly designed for this type

of cubic. In any case double precision can give you the translated cubic

precisely.

As a final example, invert the order so that
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Q (x) =221,2111x X 13449x2 + 813x -3 .

Then pj A~11, and

Q(Z+P) 2212111z 3:+ 21~4.29632~ + .t,9476893z + 10-6.289041

The, new'50heme requi',ed 9 digits whil e Hlorher's required. 13, to. get theV coefficients precisely.
We conclhde that. if double i,,-t Cfion is isM, the errors in :th ney

schei affect the roots far less ii ta critical* cases, than the errors in

Horner's recurrence. If th6 root~ ar not clustered, we don-It nced to trans-

late-the roots to the-origin. Double precision suffices for "he solution of

the, untranslated equation if, the -idoh"", agree t%*o any digits.

We have seen now that trip% prectz.-on -~nt necessary for solution of

the c ,i'c, and double precision will suff#ci. We are tempted, to ask if we

can do without double precision. It is s ,,pected, but ~hot proved, that there

is never. opy nepd for 'explicit multipl! -Preci ion! But the general schemes

that have 0 e proposed are rather costly in time and space.

Suppose TheyBuilt aSrneNwMachine?

Now here is an upsetting fact. An algorithm which looks very innocent

depends in a crucial way upon factors or aspects of floating point arithmetic

which appear to be present in all the machines that I'd thought of at the

time. Yet I can imagine somebody building a machine or implemnenting his

single precision in a way that would invalidate this prograM. How would you

ever debug it? You could say it was rounding errors, but then why does it

work on other machines that also presumably comm.iit rounding errors?

The tricks I've been telling you about are important because we would
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like to khow how to design machines which afe cconomlcal, easy to undeitand,

and have .a rich' set of nice propertiet; that would allowyou towrite reasonably

efficient programs., Then your prcgrams would run on machnes. that satisfied

these few reasonable rules. It is important to find out what these rules are.

Alas, nobody has been brave nough (to write tem. down.t

Are There Any Machine Dependent Parts- in the "Code, for :tie Cubic?

We hafre jv)t seeil that there is an al'tr)rnative to, ;,orner s method for

trafislating', the origiri of the cubic equation problem, which -only seems to

irequire double precision-. It absolutely requires uancelIAtion for maxi mum

.effectiveness! We would like to 'know if' tthere are any machine-dependent

parts of the algorithm.

Remember that we are required to compare' three numbers and, extract as

many leading digits as are equal in them. This may seem to be a machine

dependent operation.

Suppose we wish to compare two decimal numbers x1 ahd x2, which we

can suppose to 'be positive. Then let 6 Ix 1-X21.

S 2z

Supposewe can multiply by a power of the base (10). Thenwe want to

We have rules which we"think are reasonable, but nobodyhas built a machine
like that, T'cept for the BCC machine. If it ever gets straightened out
it might be -1he first of a family of machines sufficiently decent in its
hardware that you could imagine all sorts of other machines copying it, or
copying it well epough that you could have machine independent code. Right
ncis the situaiqui is anarchic.

Note: The ei eL-ey Compnuter Corporation folded and their machine was
rever compleied, but some aspects of its arithmetic are discussed in
[Appendix 'U.
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find k such that

I k

Then if we form

Integer(10k.xi)

10,

we get tWi, l6ading digits. This could easily be proerammed. The method is

satisfactory but requires the base of the machine.

There- is anothev, iethod. Suppose we xound another numbr T such that

it formqed a whot?' word t1 the left of 6:

Then (,T+Xl)- T would give the leading digits we seek. The non-agreeing

digjts of x would fall off in the addition T+xl, then the revioval of

T leaves the leading digits of x,.

Since 6 4 1 ulp of T, if we knew the rounding error level e we could

write T, 4 Now we need to know the rounding error level insteid of ,tie

base.

It is possible to write complicated machine independent coding to discover

the base or e. (M. Malcolm, "Algorithms to Reveal Properties of Floating

Point Arithmetic," Stanford Report CS-71-211, 1971.) However, we can get E

roughly, to within a factor of two, with comparative ease, which is good

enough for the cubic algorithm.
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0~ t~*~~n, wih bse , 4 8~6, 2,..,,or 10 (this covers No-tth[ American and West European ichties)

H w1.0/2.0 is always exact;

T a2.0/3.0 t-s never exact and has an eror less than. 1 ulp..

21
In fact,, T mt~st be formned by chopping *ulp or roundiiig In T-ulp. Now

if we form 4H -3T it should be about zero, plus the crror fu T, plus

additicr, errors., If We c6r-rpte in the form EPS =ABS(((((GI-T)+H)-T)+H)-T)+H)

we vii-11'see thait no rounding eqrror 'is commnitted due to addition or subtraction

L H and T must have the rani4 characteristic so. H-Tr is e±xpcI in~d is about

- This number was fonned from H so it can bi& added to H. Simnilar

arguments pIly dolwn the line so that we compute EPS to be 1'2 - 2 ± I :or 2 ulps i
so-that EPS is I ulp on a rounding machin'P ajd I or 2 ulps on a chopping,

mach i ri. Thus we have a s i mple procedure tvt. t 'machire 'indepefident which

we can. 'use for the 'cubitc algorithm.

Students' Reort on 'Codin the-CUbitc Equation Algorithm

Qvr' problem was the follow.Ing: Given a cubic equation

a.-x 3 + 3alx 2 + 3a x +a =0

where the a,1 are ox&ct tu. single precision9 solve for the three roots,

exact to a certain small. number of digits in the last place of the solution.

Separting the Roots

The program first te~sts to see 1f the roots are triple or very nearly so.

If the roots are exactly triplet there is a relation which holds between the

coefficients and the answer is obtained immediately. If the roots are not
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exactly triple, we apply the transformation given prevwously to shift the

origin anM separate the -roots. The shift-ng is done using double precision

so that the coefficients of the new cubic equation will be correct to single

precision. The shiftfactor, obtained from thedigits that match in the
a.

ratios a i = 1,2,3, is never more, than 48 bits in length. 'We arbitrarilya i-r

decided' that at least the leading 4bts of th,; ;ratios should match for the

roots to.,be cbnsrUered close,

If necessary, the shifting can, be done more than once. Our program

applies the shiftIng until the roots are completely separated.

After Root, Are Separated

Once the 'roots are well' separated, we compute Xd and Xd2, the two

roots of the derivative of the original equation. This is done to get an

initial approximation to start a Newton .Raphson routine to find a real root

(a4 least ,one rootmuSt be real in a- cubic).

Sd x cubic with three real
x 2 roots, showing the roots

1 x ' of the derivative

/ I

When Xd and Xd are real, we construct 'wo funcios, one through
I 2

the point Xd where the function is largest in absolute value and the other

through - a the inflection point where the second derivative vanishes.
a0
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h/ ,g, fl
h f

/

#-I I - ,/

g'(x .a_1:
I a 0• , g ( x = f - g ( -

g(x) f (a) + (-) 3-" h(x) ,=f(8) + a ('X-B) 3

You arq.e expanding f around these two po'its. Then, to the left of di f

is greeater than g; to the left of 0, h is greater than f. (In other

cases, it may be to the right of a, and 0 that these, relat ionships 'hold).

There must be a- real -root of f b.etween the real roots of g and h. Those

two roots, y2 and, y,, are easy to. find; they are each the cube root of

a.real number. 'ou then take a linear combination of y, and y, as the

initial va-lue for starting the Newton-Raphson subrutipe. There is a magic

factor, obtained by looking at the ,case of three real roots t which tells us

which linear combination we should take. We get

The factor m is obtained by figuring ,out what combination of y, and y,
will, in this case, give us exactly the root we, are looking, for. For m
to work in other cases, you only need show that ) o is to the left of a.

IY

/
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3

V3

This gives us an x which is to the left 0f X and the Newtoh-Raphson',

method wil-I converge to the desired rzxt.
Question: What is the rationale -for fibdlng the initial approximation

in' thIs Way? If the cubic has three real roots, starting Newton's method
almost anywhere will lead you to a root, unless you get sent to infinity,,,
ov -oget into aloopo6sei latin.§ between two -points. Horxever, it! "the last-

case, one rounding error is enough to destroy the loop and then you'll con-

verge. Why go through such an el'aborate procedure When almost any, starting

point will work?

Answer: If you are not careful, you run the ri-sk, of, converging to the

root in the middle arid that can be fatal to findindr the other roots.

Get Smallest koot First

Once the first root r1 has been, found by the. Newton-Raphson nlthod,t

using double precisiob, the oi1ginai- cubic is divided by the factor (x-r 1 ).

6ut r1must be the smallest root in order to get the precision needed to

solve the-resulting quadratic. rhe reduction to the quadratic is accomplished

by:

bo= a 6

b I= 3aI + r~a..

b2=3a2 + r, bl

1The iteration continues as long as convergence is monotonic or until the new
function value does not differ significantly from the old one.



[ - -17-17

Ntice what happens if the root ic very large (consider a. to be 1).
-3a is thie sun of 'the root--; if r I s very large, 3aI and rI are
essentially equal nd lots of cancellation (or almost complete cancellation)

could occlr. So that cancellation will not occur, you want rI to be the

root smallest in magnitude.

Kahan: This argument is not valid because it-depends upon some cancella-

tion occurring that you say you don't want, whereas actually if the cancella-

tion occurred properly you'd be very happy in-deed. The issue is that when

you compute

f(x) = (x-rl)Q(x) + f(rl)

t
quadratic

f(rl) is supposee to vanish, but that may not happen. Suppose you made the

error of accepting, r, as a root, when it was only good to a few ulps of

double precision admittedly. Then the Q you get, even if it is correct to

double precision will be tAe quadratic factor, not of your polynomial f,

but of your polynomial f modified by the subtraction of f(rl). Suppose

r is a large root.

Wa
//

Where you- have a big root you generally have a big derivative as well.
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Then a small change in a big root, like a few ulps, can make a large

absolute change r1. And since the derivative is big, the change in f(r1)

might also be big. Making that big change in f(x) is like moving the

horizontal axis (dotted line) somewhere, Which tends to shatter the-little

root. That's why you don't want rl to be big.

If rI is the smallest root, the shift in the 'orizontal axis will be

-small and will hardly affect the biggest root.

You know you'd like the smallest root. But what if Newton's method is

not so obliging and gives you the biggest root?

If We Find the Biggest Root First

If rI i$ the biggest root, we take the inverse polynomial by making

the substitution z =-, that interchange, a and a3, al and a2, and

the biggest root becomes the smallest. We solve this. cubic and if necessary,

reverse again.

Question: What if I. move the origin to be very near that root with a

large derivative? Then that argument about the derivative doesn't hold.

Answer: Yes, but a unit in the last place of a small root is a very

small number so you have a small change. But then the other two roots, which

are badly blighted by this change, will be blighted by almost any change in-

the coefficients of an ulp, so they are not well determined. The argument

I gave is incomplete, but its essence is not that a certain type of cancella-

tion does or does not occur, but rather that if you throw in all the other

rounding errors, you'll discover that the division process will give you a

quotient Q which is in fact the Q that corresponds to a slightly wrong

polynomial, slightly wrong because of f(rl) and each coefficient having

been altered by a little. Even if r I is the smallest root, the rounding



errors that will be most important will not be theerrors associated with

fVri), but the errors associated with the perturbations in the coefficients,

and if thbse perturbations cause the roots to fly around a lot, you just

have to -live with that. Of course, our perturbations are in double precision

and will cause at, orst a change in the rrots of a few ulps in single preci-

sion. Since we have shifted the origin so that we don't hWve near tri'ple

roots, eI/3 does not appear4 but rather e1/2 turns up. So if you do

everything to ouble precision, you get sIngie precision results essentially.

But let's get back to why it is bad for Newton's method to converge to

the middle root.

Why Not Get the Middle Root First?

The middle root can also be a big root and theh the same argument as

before applies, The tiny, root -gets -abnormally badly shifted-:by the rounding

errors. And now you can't avoid the issue by inverting, the cubic; you can't

escape the-,rounding error ;probiem. That's why you -must not get the middle

(,in magnitude) root first.

should not y t
this root first

The strategy of the program wll give the righthand root (which is the

biggest) and then you invert the problem, If yiou had tried to divide out

the factor for the lefthand root, you'd destroy either the largest or the
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smallest root. Whek~two roots are nearly equal and the third ifs Very

d-ifferent i t- doesn t.-matter whi ch you get fl.irti, because you can always

invert the. polynofial;. "The probien arises only.,when -the, three roots are-

different in mIagivitude; you~wst-not get the'.middle in magnitude first. The

strategy is designe -to ayoi4doing that.

Des-i vati-ye, Has. co.1jQex 'Roots

VWhen the originali cubi c has ,io maximumOr minimum but ;only inflection

Ipoints, the derivative roots are complex. Then the picture looks like this:

12pin -t h-et(nti itryo tero idasialesatn

value for the 'Newton-Raphso-n method. Another suggestion was to take the

derivative at -ai /ao and extend the line to the axis and see which point

is closer to -a I/a 0. With either approximation, the Newton-Raphson

method converges.

Th eiaie MyHv ls Roots

Problems arise when the quadratic has two real, roots that are very

close. The center of the graph becomes iiearly horizontal. If we try to

use the point for which the function is larger, we could make the wrong

choice, Howeyer, the linear combination of- points will give us a point to
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the left of -al/ab,  even if we made the wrong choice..

' 5' h
/ 2

It doesn't matter which h we use in this case.

Kahan: The issue is to distinguish these two cases:

this root
wanted-

this root
wanted

It is easy in the, cases drawn here.

But what happens when the horizontal- axis is so close to the point of

iriflection that you -cannot tell which of the two lines is the axis, because

of rounding errors.

If the lower line is the axis, you should go to the left; if the upper
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line is the axis, ycu should go to the right, 'Now you need a formula such
that the roundoff c&omitted in evalUating the polynomial at the point 'of

inflection will not do something bad to you. The original program compared

the magnitude of f at the zeros of the derivative, but that has prjblems

when the curve is, nearly flat, The logic Was such, that givertte graph below,

you thought you hd the dotted graph and you'd never find the zero.

-/

You need a formula such that, if you don't know if h should be to the right

or left, of the inflection,, ft will not matter whi'ch one you construct. You'll

still get a satisfactory approximation to the biggest or the smallest root.

Question: I'd like to ge back to the middle root problem. I cah make

any root middle by moving the origin.

Answer: There is a problem only when the three magnitudes ,are very

different. If they are all close, it doesn't matter which root I get first.

The algorithm appears to be independent of the origin but what it does is

select a root to go to firstwhich has the property ,always, that if the three

roots have very different magnitudes, you will not go to the one of middle

magnitude.

* can be middle
(magnitude) roots

/

/
/

I



If the middle root is on the right,, the algrithi won't take you there.

So what if it is on the left. Then you'll go to the large root at the far



18. HOW SHO'L ONE SOLVE A NONLINEAR EQUATION?

What Should We-Mean By "Solve an EqUation?"

How accurately can ydoi solve an equation? I'm going to. lImit-Myself to

a single equation in one unknown with a real .... .SOM further

limitations later. The reason for fiposing these restrictions-is to-have

a .reasonably definite object to study.

We want to solve: f(x) = 0

First, we should not take that imperative too seriouslyi Solving

f(x) 0 uld very well be impossible for either or both of two reasons.

(1) When you compute f(x), the value you compute will be contaminated

by roundoff. It may be that even though you have the correct root repre-

sentable precisely ir, the machine, an attempt to compute f, using reasonable

arithmetic, will lead to rounding errors which necessarily produce a value

of f that is not zero. It is conceivable that f as computed may never

vanish, be:ause the value is contaminated by roundoff. An example is a

polynomial equation with reasonable inte.r coefficients, one of whose roots

is an, integer, but whose degree and coeffictients are large ea1eugh that a

u Unding error necessarily occurs; once it occurs, it doesn't go away and the

value is not zero where it should be.

(2) It is conceivable that you could compute f quite precisely, but

will f vanish at any value of x available to you? An example of such a

function is:

f(x) = (((x-0.5)+x-0.5)+x)

or f(x) = 3x - I

This function has the property that, for any machine, in the neighborhood

of the zero, no rounding error will occur when the function is evaluated. Whyl



18-2

'f course 1/3 is not representable precisely on a binary or power of 2 or

decimal base machine. But numbers very, close to 1/3 -are represd.%,able and

they'li have thesam.,,characteristic,,as 1/2. So x-05 ill be done pre-

ciseliy. The difference will, be -- 1/6; that may have a different characteristic

from x, but whn it is right shifted, no digits will be lost; so adding

x doesn't give a rounding error; the result is now -1/6. Subtracting 1/2,

, -ven With atight shift loses no digits, so there is no error and the result

is ~-/3. FI naily, adding -1/3 'causes no rounding error and almost all

digits will cancel. But because fno rbunding errors have been committed, you

cannot .get zero because you did net tput in 1/3. Therefore, f(x) never

vanishes

Thus, if you insisted on solving f(x) = 0 explicitly, you could fail

to do so even though you had comitted no rounding errors. This example

points out that there reallyare two rasons why equations are troublesome

to solve.

1) You cannot compute the function you'd like to have vanish exactly.

2) You may not have a place where the function is small enoug'hto be

called zero simply because your set of representable numbers may be too

coarse.

It is possib.le to construct functions which, when compiited in the machine

with rounding error, will exactly match other functions that don't have the

property you expect.



.Consider the follwi..n two functions:
I 3x I

3x 1 Y

Denomiato" computed a, M(x- + x-)+ x) so it dce-jt vanish. Z. has- a

pole at, 113, s-o, it doesr,,'t ivanish :anywhere.

Y and Z 'have the property that for all numnbgs *in your machine,

assuminft underflow is set to zero without a message, Vheir -computed valuos

arc exactly the same, for suitably chose;. e ( r 50 on, oUr machin.,)

Sine Y and Z are indistinguishabl,-.there must be certain TIngs

about zeo f.inding that cannot be said with .onfidence. You have, ,tt be

more circumspect in how you describe the, probTgoi. In effect, What we have

to say is when the value of 'the function is smal") enough To be called zero,,

To do that you need to know more about the function than nrely its computed

v ue.

To know that we are not trying to solve an insoivab)e problem,, we have

to have a bound on rounding-error. I want to compute f(x) and I get F(X).

I need some tolerance e such that

e > IF(X)-f(x)l

I must know the uncertainty in the computed value. If I do n( know
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that uncertafnt,, I do not know, lf 1 m trying. to solve a reasonable or

u nreasonable equation.

The prob!e* rtust be changed to read as: Solve jf(x)j <. e. That might

make more sen- , If you have e in advance. But the example of 3x- 1

show.d fiat it is not enough -to know a bound on rounding errors. Here the

rounding error was zero and had I been .asked to solve If(x)I < e with

a, 0, 'I couldn't do it.

This defect will be repaired shortly.. The point is that to solve an

equation yoiu have to state more than the Subroutine that defines the function.

This problem is not due to any particular programming, language, but rather

resides in the .mid. of people who want to use equation solvers. These

people must be educated to realize that equation solvers that require only

a function defining subroutine cannot be depended upon. Additional informa-

tion in the nature of an error bound is necessary.

Consider a modification of the above problem, which will have a solution.

Suppose IF(X)-f(-x=)l <e(X), where F and e are known. A subrou-

tine computes what is intended to be f(x) to within a known tolerance,

which may vary with X. Suppose also that I know that if Ix-x'I . 1 ulp of

x, then

I f(x) -,f (x-1 <6(X

6(x,) is a bound on the variation of the function when you vary the argument

by I ulp. So you know (1) howy to compite the function approximately, (2) how

approximate is that approximation and (3) how rapidly the function varies.

Question: You're not talking about the kind of approximation where

you compute approximdtely some approximate value, are you? [See 13].

Answer: That has to be bound up in the e. It can include rounding
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errors, and truncation errors (taking a finite part of an infinite-series).

Like for sin x , you ,expect the result to be within a unit or two of the-

sine of some number which is almost what you put into the machine e must

reflect all that error.

As we will see 4(x) is not as independent of e(x) as it would appear.

Not only are there errors in rounding the output; there are also errors in

rounding the arguments whichwlil appear in 6. and also in e. Normally 6

need not be known in advance.

When Will a Solution Exist

I will show that if f(x) vanishes anywhere, then necessarily F

must become smaller than the sum of the two tolerances.

"Solve IF(X)j < e(X) +6(X)" has a solution, provided "solve f(x) = 0"

has a solution. The main subroutine is F; you must also give the equation

solver a subroutine that provides e(X) (not too exactly computed) and

another that provides 6(X) (although this one is not really needed). i

didn't say Iwould solve IF('X)I <e(X)'+S(X), only that it has a solution

which is quite a different thing.

The trouble with this theorem is that it is non-constructive and trivial.

The proof, sheds very little light upon the nature of the problem.

Proof. SaY f(x) = 0 defines a value x, not necessarily representable.

Let X be the closest representable number to x, so that

IX-x < ulp of x or X

Therefore
IF(Xv)- 0 (=f(x))l <_.IF(X)- f(X)l + If(X)j- f(x)l

e(X) + 6(X) by hypothesis
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The proof is trivial; a solution exists, but all the proof does is

assureus that the requirement "solvie [F(X) < e(X)+ 6(Xv. is ntt yet

known to be impossible.

Question: I'm still confused by one unit in the last place. It seems

you'd find a place-where the exponent changes so that the ntearest repre-

sentable number ...

Answer: The nearest representable number differs from the given number

by less thah 1 ulp of that representab'e number, even if it is l.O0O -.O.

It may be 4 good deal' less than I ulp of the representablei number. That's
wy I have 6(X), not 6(x).

Lines are repre-
- I , sentable numbers,.

1 .00... 0

What is the number closest to '? The difference is less than I ulp of 1.0,

which is the large gap to the right of it. I could have said 1/2 ulp and

gotten essentially the same result.

The problem is how do you go about computing S(X) and e(X)? Normally,

6(X) < e(X), so e is a bound on 6 and not too large a bound. (I say

normally because of the example 3x-l1 where e(x) = 0.) e(IX) comes from

two sources:

(1) You used an expression that is not exactly the function you want.

(2) Roundoff alone (I'll consider just this, one).

I'll get a bound for e(X, considering roundoff only. Had there been

truncation errors, e would be bigger and the result would be even more

trce ( if one thing caA be more true than another).
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Rounding-Error Anil-ss-

F(X) -(,X, X) &(X1X S

Every operand that appears in &alculating F(X) Is named separately. ;For

exampl e

lXI+Xl

Subscript each appearance .of each operand so that you could think of them as

independent variables. The function you compute is what you get when all

X.'s have the same value.,.1

What would a rounding error bound look like? There will be many rounding

errors.. AiMng them will be the ohes attached: to our attempts to use the

operands X.i For example, on the 6400, when we add anything to X, some-
Y1

thing else is c(imputed.

"X X: Y" becomes X(l+g) + Y(l4n)

We only know a:bound on C, that J is at most 1 ulp; (l+n) only-makes

the error bigger. When you compute rounding error bounds in the usual way,

every use of X introduces a rounding error which may be attached to that

letter X as a perttirbatinn of at most a unit in the lost place. Other

stuff gives other perturbations , which tend to-make the errcr even bigger.

Let us consider how big is tho contribution of those rounding errors

that are attached to a letter X, every tine it appears,. The total error

will certainlyn e even bigger than that.

The easiest way to discuss this is to differentiate (even though that

is not necessary). What I compute in place of &(X,X,...,X) is at least ds

bad as &(X(l+ .)Xl+Yz)..X(l+ n)). In each case, .X1 < 1 ulp of X or so.
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Aow 'Does &Vary.

Iin'using the notion th-t each one6 of the X's is an independent

variable and I can-differentiate W 'ith respect to that inidependent Variable.

I now-:have some netion of how the-expression can be altered by rounding

-errors. The bound is in soije respects realistic;, it is conceivlble that all

F the rounding errors ~.could have just the correct sign to-match with the

derivatives anoi could be as large as a rounding error ever is-but

realistic to the extent that only if there were an extremiely large number~

of rounding errors involv'ed would we believe that you cou~ld not find an argu-

ment fo-. which all the roundiig errors would be about as bad as they could be.

The contribution due to' roundoflf is. at least as bad as 11JJ Ri jJ$
3 3

tLecause rouridoff will include some things wei.ven~t taken into account (the

(0+0j and truncation error). We can also write this as

118J'r~~j1 19&'1 li Of X) _emX

Now let us consider what S(X) has to'be like; 6 is a bound on the

variation in the function caused by altering X by I ulp.

(X)- fI (y I oII XX'lIdfl~-*(, ulp -of X) _* 6(X)'

That's the best bound we can hope to get for 6(X), so that's ,,)i we expect

to get.t

Smay be a bit bigger; I should look at the maximum value tl y the
derivitiveon the interval [XIX'], but being too rigorous will just
obscure the issue.
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Compare the expressions for 6(X) and e(X). To do so, observe that

ldf ,X) = (X

That last sum appeared in the expression for e(X). So you see why I claim

that normally S(X) < e{X).

There are many gaps in the reasoning, aside from th 'fact that I've

approximated in many places, but they are approximations that can be patched

up. What I've really 'done that's unforgiveable is to, assume that every

appearance of X is going to have its own independent rounding error. That

is visibly untrue, because we had an example where each appeArance of X

had no rounding error at all. I've also neglected to consider those machines

in which roundoff behaves in a somewhat better way (where, when you sum, you

round the sum and not :the operands)-! it is -an ekercise to verify that even

in that case, normally you expect 6(X) < e(X). I say normally, meaning that

when I add something to X, that something has been rounded, so that the

rounding error that occurs can be attached to X instead when you look at

the value of the whole sum; you allow the error to migrate to X. So this

argument is reasonably general in spirit, but incapable of being proved

precisely in all cases, since-we have a counterexample.

This nontheorem allows us to simplify the speci.fications on a equation

solving subroutine to read:

"Solve !F(X)I -_ 2e(X)"

An exercise would be to consider a polynomial, evaluated in the usual

way by Horner's recurrence

f(X)= axN + a xN'l + ... + anx + an  the function

(X) =("((aoXl +al)X2 +a2) 3 + ''') + an the expression
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Each of the X's is multiplied deich multiplication generates an

error that can be attached to the X. So -e(X), constructed in any way-you

like, will necessarily have the property that it also bounds the variation

inthe function ca.used by altering X by 1 ulp. You really have a bound

for the derivative.

What Methods To Use To Solve !quations

We now have some idea of the sorts of equations we could hope to- solve.

Now we need to consider what type of method to use to accomplish that

solution.

The presentation has not been rigorous, but was intended :to show the

nature of things that could be proved rigorously, Only in exceptional' cases

can you hope to solve equations exactly -in any sense.

When you sta;n. to look for the, rocts of an equation, a -very interesting-

thing happens. Norr.,:01y we, say: Try 'some al'grithm;, if it doesn't work,

try something else. That isn't much heLp. But for any, algorithm that

doesn't have an ironclad and necessarily trivial guarantee, you can expect

to find counterexamples for which the algorithm will fail,

'Newton's Method

An example is Newton'5 method. If you ever get close enough to a root

of f(x) 0, convergence is necessarily rapid.

xI  - f(xo)/f'(xo)

x0 x1
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Even convergence to a multiple zero is not unduly slow, provided you measure

it the right way.

Unfortunately, the theory for Newton's method is of a local character.

If you get close enough, then something will happen. The close enough means

you can approximate your curve, to within a difference that doesn't matter,

by a straight line. That's not generally what you fdve in mind when you

start the problem. You shouldn't be surprised that there are many examples

for which Newton's method doesn't work.

Suppose your function looks like this (like arctan):

If you start close enough, ,the method will work. But if you start

outside the dividing lines, you,'ll go off to infinity and it won't take you

long to get there.

When Will Newton's Method Work

You'd like some sort of theory that tells you that if you use Newton's

method in this case, it will always work. That takes some fairly strong

global statements about your function, such as if the function is convex in

som neighbovthood of a root, then anywhere in that neighborhood, you can

expect Newton's method to work as long as you don't get thrown out of that

neighborhood by the first iteration.
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a good starting plae (will converge)

not a good starting place (won't converge)

A more precise scatemert ,(by Fourier) would be that -if a function is

convex in a: ceri'ain interval at one end df which there is. d root and certain

sign conditions are met, and if you start in that interval, you stay in it

and convergence is monotonic.

However, a condition of this type is not entirely satisfactory; but it

is applicable in many cases. The situati6ii is. :comp!cated by our inability

to recognize When 'Newton's method is convergent.

What many people do with methods like Newton"s is to observe that when

things are working, the value of the function decreases with every iteration.

'From the picture, f(.X ) > f(x1).

f(xo)

The direction tliat ,Newton's method tells you to go is ini a sense a dowlward

direction for the magnitude of the function.

Modified Newton Method

So modify Newton's method so that instead of moving a distance

f~x0)f'Xoltyou move a fraction t of that distance. Say
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t = x0  tf(X0 )/fxI':x) , 0 o t < 1

x ioves\ in the direction
It.

'- Newton'- method points, but
not so far

xo xt xi

3ow does f change?

= (xo) A]I f((t)t=O _-,,, ,, ( o,l .

The derivative, with' respect to motion from k to xI, of f 'has a:

sign oppo3ite to that of f. At least initially, the magnitude of th2 func-

tion declines, in the direction that Newton's method takes you.

So people have attempted to guarantee, by the selection of t, that

the value of f will always decline. That means t = 1, may not be such a

good choice; t is same fraction that makes Ifl decrease. That will

greatly improve convergence in the following case:

f is Targer +) ' 0
i , f s smaller

If you repeated this process you'd hope eventually for something, good. There

is a difficulty in that you are seeking'a place where [fl is minimal and

it might not be a root. So usually appended to this is a method to see if

You can apply.Newton's method in the complex plane with similar results, or
in the mu.Itidipensional case (f'(x) becomes a Jacobian matrix and I/f'
becomes (f')I.)
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you've reached a local minimum in magnitude.

oot * = traps

The root is hidden by little traps. If the guy is a bit unalucky, 'he might

end up in one 6f t.he traps and never find the root. He'd have to use some-

thinq that is no% already in the algorithm to discover his plight.

But normally, you do have a way of detecting this situation and then you

do something else.

'Question: Why- not just take constant steps if you're going to scale

dovn Newton's steps anyway?

Answer: In principle, by taking constant steps of I ulp you could

exhaust all the arguments and find the solution if it existed'. But that's

not fast. You take Ne;wton's step a~id hopefully that value is so much closer

to the root that you'd verify this fact by noticing an enormous decrease in

IfI. You're confirmed in that choice and do another Newton step. If you

don't see the enormous decrease in Ifl, then and only then do you use a

different strategy.. You put in t and cut the step in half, quarter, etc.

I'm not reconending this method, but just indicating a rationale people

might use and the way these things go wrong.

There are certain cases in which it is known that if you hit a minimum

of the magnitude, there is an obviously right thing to do. These are cases

when you're dealing with analytic functions in the complex plane. The
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Minimum Modulus Theorem zays that the only way for an analyc function's

modulus to be miriimum. is for it to be zero (also called d'Alembert's principle).

Therefore people often feel they have her, a guaranteed rethod, if only they

jump into the complex plane. Unfortunately, this doesn't always work- out.

That is 'because,. although it is true that a minimum of the magnitude can

only be a zero for an analytic function,t if the function has singularities,

a minimum of the magnitude coi4ld easily be a singularity.

complex ,plane
I'I, i + z/ 2 -

1+ Z172 has a local minimum in magnitude at Z = 0, 'but that is not

a zero of the function. The graph has a break. In this particular case,

if you turned yourself and plotted orthogonally, you'd get the dotted line,

and discover you were at & saddle point, and now were at a maximum of the

magnitude. This difficulV is quite typical.

Programs which are baseu on d'Alembert's principle generally hang up

in one or both of two ways.

(1) They find a minimum in the direction Newton's method tells them

to take.

(+real axis plot

S\ ~ imaginary axis plot

IAn analytic function is one which in the interior of a neighborhood has no
singuk'ities; in that neighborhood, d'Alembert's principle holds.



L1 ]J- 16

IPm willing to use comp l, f{alues for Z, but begin by using a real

value. Newton's Piethod tells i* ., go along the real axis and no matter how

1 choose t I never g0t into tht -,-tnex plane and I only find the locai

minimum. If you looked at the pr b,'em along the imaginary axis, the graph

is rather different. But yot! can't get onto the i-axis using .teton IS

irethod.

(2) Sc peop le are obliged to discover that they are at a rAinimum of

the magnitude of an analytic function with respect to variation along a

line which is necessarily a saddle point. Then they must turn the problam

through -,n appropriate angle which depends on how many derivatives vanish."t

You either know all the derivatives or are willing to make a large number

of guesses.

But all of these algorithis have their own hangup. Their hangup is in

their inability to recognize when they are nearing a minimum of the magnitude.

You'd recognize that you were nearing a miniium 'by noticing -that successive

cnmnted values of Ifj appear tono- longer be de ,,easing sensibly; they've

practically stopped decreasing. You'd identify- the minimum because Ifj'

stopped decreasing at all or decrease only b.ut a couple ulps. Unfortunately,

it takes a long ,time to identify this fact, because convergence to the

minimum of jfj is generally very slow and there doesn't appear to be a

decent way of speeding it up. You can even construct functions that don't

have a minimum but somehow the algorithm does ugly things to you.

+if = 0 and f" 0, turn through 900. If f' = 0 and f" = 0 and
f 0, turn through 600 or 1200. If f' = f" = f"'= 0, f' ' 0, turn
through 450.
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Here's an example specifically to refute algorithms based on A'Al1mbert's

principle.

function value is a

S' little less here

t|

start here

5th degree -polynomial

If you started here, you'd
oscillate between the two
points.

f you were oscillating, you'd catchyourself if you were testing for

a decrease in Ill. But say you start.,a little bit outside that box and get

to a point also outside the box but a little closer. You and up traversing

a path outside the parallelogram, getting closer all the time.

Examples like this can be constructed so that although the sequence of

values IfI decrease, they decrease arbitrar ily slowly. The decrease at

step n of Ifj could be *-37; you can easily figure out how big n would
n

have to be to be decreasing If! by only a few ulps; perhaps at that point

you'd be willing to give up that particular iteration.

rfuestion: Wouldn't you notice something fishy In that your X values



, 18-18'

are 4a:terately positive and negative?

Answer: Did you notice that? You'd have to put in logic to notice tha

and youA'have to be sure that the logic wouldn't be tricked when the itera-

tion it .1upposed to be like that. In this same example, it you get close
enough 0nbe is cubicuily converqent but the X's alternate in, sign.

I'm going through all this to show you the lengths you must go to haviie

a program that you can guarantee. It is not possible to write a program that

you can guarantee for arbitrary ,subroutines' defining f. It appears possible

that in principle no matter what logic ybu use and what constraints you put

on the functions like demanding that they be continuous and really have

roots), if your program accepts arbitrary functiohs, someone could look at

your logic and construct an example to confound your method.

More Reasonable Claims for Equation Solvers

We must settle for a more modest type of claim which severely restricts

the classes of functions for which the zero-finders will work. For example,

some programs only take polynomials; even in this case no one has proved that,

including all errors, his program will work for all polynomials. The only

programs for which people have given even approximate proofs in the litera-

ture are those programs which are known to be exceedingly slow. For example,

there's a method due to Lehmer that involves drawing circles and in the

absence of rounding error tells you whi.h circle contains a zero. If a circle

contains a zero, you subdivide it into smaller overlapping circles and look

again. This is obviously slowly convergent.

There are othcr algorithms which say that if you do something long

enough, then an event will occur after which convergence will be fast. In

principle you can show that yot, should not have to work very long to have
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worked long enough. But the proofs canno-t say how long is long enough.

There is a method by LaGuerre that is cubic!y cop geht if you are close

to -a zero. Programs using this method on the 7094 wl,1 accept polynomials

up to degree 80, although it has been modified for ,polynomi'als of degree 2500.

This may sound like a great accomplistnent, but remember that such a polynomiai

has 2500 zeros which means they are almost everywhere.

ahe: only trouble with LaGuerre's method is that it cannot guarantee to

give a starting, value (fo& the fast convdfence) in the time you are will-ing

to wait.

'Then there are programs that use intinately everything you know about

the function whose zero you seek. That of course includes the error' bound

because that's the only way you know when to quit looking.

Can Binary Chop Be Bettered

As an exercise consider finding a zero of a function known to be

continuous and at the ends of a-given interval' the f'unction has opposite

signs. Is it possible to write a foolproof program that is faster than the

obvious binary chop algorithm? To within certain limi:ts, it, is possible to

Construct a method that converges superlinearly. Once you get close enough,

the number of correct digits is multiplied by some constant bigger than I

at each iteration, The function does have to be smooth, but most functions

writeable in 'FORTRAN are sufficiently smooth.

If you want to find where the function vanishes, you need more than the

sign of the function. You also need to know an error bound. If you want

only to know where the function changes sign as computed, you don't need an

error bound but only need the sign digit correct. But then, binary chop is

the best that you can guarantee.
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Forifan ifiteresting algorithn of this type, see that of T.. kker in

.Proteedifigs of the §Mnosium on Constructive Aspects of the Fundamental theorem

:of A ebra.
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19. CONSTRIJ CTION AND ERROR, ANALYSIS OF A SQUARE ROOT ROUTINE

w 1'll give you a successful error analysis. It Is based on -a very

intimate appreciation of the hardware cf the.machine. You 'have to choose a

- simple algori-thm -- I have .chosen a square root. This analysis must be ,done
4_

for elementary functions.'

I'o going to show you how to analyze a square rootj tompletely.. Every

detail will be covered.

The 7090-and 7094 are signed mag-'tud .i...hi.es.-

sign characteristic

- normalized integer
part

Spcicification for fhe SQRT routine;

i) sQor(x), A.Ax, x &
ii) SQRT (-X) . ,X < - C

and an error trace and message "SQRT(-X) = -SQRT(X)-."

graph of SQRT(X), a nice continuous graph

t All the elementary functions for IBH 360/50, in single and douhi'e precision,
have been analyzed in this way to the extent that number theory wasn't
needed. The mat, who wrote them has done this and is able to say Something
like the error is no more than 15 units in the last place. Then the machine
is tested on thousands of 'operands to see if his predictions are justified,

ttThe response to taking a square root of a negative ntimber is not at all

obvious. It's not obvious that we should be kicked off the machine.
See [6].
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Soecifications on th ERROR

f i ) Error cannot exceed .50000163 ulp's (recall 27 bits is roughly

8 decimal -digits, so the error-bound is given to 8 digits).

ii) Among the 234 essentially different positive floating point

numbers (227 different operands -- 226 from the significant digits, 2' for

whether the exponent i's odd or even), only '9 x 27 produce incorrectl)

rounded square roots (neglecting powers of 4 that is only 29 different
operands). By this i mean that for only that many operands will the value

written out by SQRT b -other than what you would have qotten, by taking the

square root exactly and then rounding it correctly-to 27' bits.

The error bound is obtained by exhibiting those 29; for those correctly

rounded, the error is 1/2 in the last place; for the others, the bound tells

you how-muchworse the error is.

One Way to tell how bad a subroutine is, is to enumerate all the errors.

But you could tell how long that would take, even on the 7094; that was not

what was done. You have to do an error analysis sufficiently accurate- so

that all the places where the errors are likely to be big are exhibited and

in those regions you enumerate all the arguments.

Question- W'.en you are checking these routines for the largest errors,

suppose you are checking your double precision version?

Answer: That's not the way it's done. The double precision routi',e

could also be wrong. There is actually a number theoretic way, whirch i

quite preise.

Question: Would you go through the argument of what the 234 numbers

are, and in particular, do you accept unnormalized numbers?

Answer: No, we don't allow unnormalized numbers. There are 27 bits,



19-3

of which the leadingbit must be' a 1, so there are 226 diffeent operands.

Then you can have 28 different characteristics, for a total of 234- different

numbers. But there are only 226 times 21 essentially different operands,

or 227. Oily, 29 of those give incorrect rounding.

Question: Is it part of the specifications tit the routine'only pro-

duces correct results for normalized operands?

Answer: Yes, all the subroutines on the 7090 are tet up that way.

Everyth-ng is assumed normalized.

Secifications to be Matched

Let's consider now some of the more valuable and interesting parts of

the specifications.

i) If X > Y > 0, then SQRT(X) > SQRT(Y)

(preserves monotoni city)

ii) SQRT(X**2) = SQRT(RND(X*X)) = ABS(X)

(exact for all X for which' 'X2 doesn't overflow)

Number ii) seems reasonable. But say in a fit of overamtition, I tried

to match the following:

SQRT(X)**2 = X

It is not possible to do this for all x. Why not? It is true for all

X which are perfect squares. (That case is insured by ii) above anyway.)

Question: SUppose on the 6400 that X and Y are sufficiently close

that their square roots differ by I in the last place, so that when you

subtract the 1, what is left is in the double precision part of the register.

Answer: That is a problem that will have to be looked at by the people

who do that project. But I'm talking about a 7090, ard on it if two numbers

are diffe'rent their difference is nonzero, unless it underflows, and then you
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get a Message,.
There are questions of how long the program should be but that wont

concern us except that it should not be appreciably longer than obther programs.

Then there are questions of what alternatives should be use A. properly

documented program should say how long it takes, how much storige is required,

hat alternatives are there, are -there any systems side effects. For example,
in this SQRT, it is possible to take the square root of a ,unber that has

temporarily'overflowed into the P and Q bits, e.g., for'CABS. Another

part of the docdmentation is the method used in the program.

Heron's -Rule

The method. is based on what used to be known as Heron's ruleij now known

as Newton's method for solving a quadratic.

graph of y 2-x

y 2= x / Yl=x

Yl Yo Yo

From the picture, this clearly converges. It is important for us to know

how fast it converges. Unless it converges quickly, it is not a, good method

to use.

Convergence in this case is quadratic. If I can manage to get yo to

match the square root of x to a reasonable rumber of digits-, each iteration

will about double the number of corrert digits.

The easiest way to show this, without resorting to Taylor series and

such is to pretend:
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-- 1+6o
- -- relative error is z 26o  for small 6Yo -

00
1l+6~ 1-6 1+62 1+l

- + ) - I( - / so 6 (quadratic
o7 0- oT l-s0 l'-K o convargehce)

How do you begin? What is your first approximation for y0? :

To Get the Approximation

The idea is to choose a simple function, 9ne that is extremely easy to

compUe and use it to approximate the graph of the square root.

Say you wanted to use a linear function. But if you do that over a

large range, something will go wrong. So you restrict the range of your

approximation to numbers within a factor of 4. All numbers will fi't into

this range by appropriate multiplication, by powers of 4.

approximate in this
range of x

,! 1 2

Question: Wouldn't it be the range 0 to 2, not to 2?

Answer: No. Remember, zero is not a normal, floating po'int number.

SQRT(O) = 0; it is too easy. And. the square root of all other numbers can

be obtained by taking off al1 but the last digit of the characteristic, and

that puts them into the range to 2, without any rounding error.

Once the number is in this range, you can start to talk about simple,

say linear, approximations. What is the best linear approximation? It turns

out, however, that the best one is not the right thing to use, necessarily;

it depends on the machine. On some machines, multiplying is expensive,
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[ unless you multiply, by a power of tw. So things like the following are done:

X = 0.5 < F < 1.0

0- or I

V1 2 F the is in the range to I

Yo= 21(F1-2- J/4 + c)

i tried al-I possible program- of a gjven length, and this one turned

out the best.

Question: Did you try table lookup?,

Answer: Yes. One of the 'best prog i-As on the 7090 was a rather
elabnra'et table lookup, but -on the 709-4, my scheme was faster..
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Question: I have , question about the function you chose to start

the SQRT. You said there were other choices- What were they?

Answer: The idea is to consider all possible programs, no longer

than one program that already workud, that could compute a square root.

There are certain programs -so implausible that you can rule them out.

immediately.

You begin by doing necessary things, like loading the arguments.

You make a table of the possible first, second, third, etc. instructions.

This listing generates a tree, in which each node represents a choice of

instructions; each node is the state of the machine at that point (the

value of a function computed) if-you follcw the tree to that node. The

tree gets pruned-quickly because you throw out obvious things not to

do (like incremrent an index you don't kn6vi).

Question: It seems to me like a shotgun kind of thing.

Answer: Isn't it?

Question: Most timet you have some sort of objective in mind?

:Answer: Many people would like to believe that if you know what

y(ti want to compute you can deduce how to do it. And,, in a rational

world, that would perhaps be true, But as you will discover, there is an

enormous amount of trial and error in these things. Even after you've

done all the deduction that can be done, you still have to try a few

things. You should not decide beforehand that you will only use such

and such an approximation.

I worked out this tree and had various functions computed at the nodes.

You don't have to go down more than a few levels to get a tree that is

7'
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already unmanageable. But you can rapidly prune the leaves; you'll find

you have the .same function at two different nodes, and then you prune off

the longer path unless it has advantages. If you do't prune diligently

you won't get a decent set of programs; you must check at each stage what

functions you can compute. You must be careful not to name any constant

that need not be named. Say if I do an ADD; I don't say what

l'm adding until later, so I can optimize the course at 'the calculation.

It helps to know how the program is going to end. I knew I had to

end with at least one step of Heron's rule; there is no other economical

way known to-tidyupa square root. Any calculation will be contaminated

by rounding errors; to make them as small as possible, one step of Heron's

rule is very nice. Of all high order convergent iterations, Heron's rule

is fastest on a binary machine.

The argument goes roughly as follows: Although rapidly convergent

iterations are infinite in number, it is possible to do some analysis to

restrict the kind you have to discuss. For example:

Xn+ l = (xn  iteration scheme

This converges to, x. = O(x,); we then talk about the speed with which

this iteration converges . Convergence can be arbitrarily slow. But if

q is differentiable and if k '(x)j < 1, then convergence is at least

linear; i.e., the number of correct digits will be a linear ,function of

the time spent doing the iteration.

If *'(x,) -0 and !4"(x=) j 0, then the convergence is quadratic;

i.e., the number of correct digits nearly doubles with each iteration.

,X constant )' 0
(xn-xo)2
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However there are infinitely many f that will give quadratic convergence

to any particular root. All you have to do is.,write down an equivalent

equation.

x = O(x) (there are infinitely many of these)

Say you want to solve

f(x) = .

You could just as easily say you want to solve!

()f(x) = 0 (for any qb)

Then consider:

x - x - p(x)f(x) =(x)

Sayi.,g x = j(x). is like saying f(x) = 0. Of course, there is

the question of choosing i(x). Or, what other functions could I -get?

But here is something interesting. All quadratically convergent

iterations are essentially Newton's method, applied to some equation equip-

valent to yours.

There- has to be a function F(x) = (x).f(x), which vanishes at

the same place that your function does, with the ,property that:

(x) = x - F(x)/F'(,x) (this must be true)

It is ,not necessary that F(x) be some multiple of f(x), only

that they vanish at the same point So If the iteration is quadratically

convergent, it is necessaritly one in which the iterative function has the

above form, for some F which has the appropriate property that F'(x.) 0.

We know we want to solve the equation x X; so f(x:= x2 ; X.

So we ask, what are the equations equivalent to this one? But to do the
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iteration, the qdotient has to be computable aind it had better not be too

complicated. What simple functions can you, coipute; you can add, subtract,

multiply, but you might be reluctant to divide 'fery often on some wachines.

When we limit ourselves to rational functions, F(x) is rational and

proportional to f(x). That's a pretty strong limitation. You discover

that x2 - X is about as good a function as you can get and still con-

verge quadratically.

If I write

F(x) = xP(x2-X)

for some choites of p this can be cubicly convergent, but then (x) is

more compliated to compute.

Some of this rather elaborate theory is discussed in a book by Traub

in which he discusses families of iteration methods' (he fails to prove

some things he says he does).

The tree is not as ramified as you might at first think, since you

have some idea how 'it must end. You are generating a first approximation

to be used in one of these rapidly converging iterations.

Question: Why did you limit yourself to the number of instructions

in anotber program?

Answer: Once I have a program that computes the square root, it is

clear that there is ne point in looking for programs worse than that one.

They might be longer but faster, of course. So I guess it wouldn't be

"none longer'but"none much longer." But I had some programs that didn't

use much floating point, so most instructions were 1 or 2 cycles. If I

was to do anything clever using floating point (which takes 3or more cycles),

I couldn't have a longer program or I'd be slowing it down. This was for

iJ.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall,
1964,
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a 7094; on another machine you might have td think differently, like maybe

no more than twice as many instructions. It is important to have an upper

bound. You should have a program in hand, or you have nothing to optimiZe.

Question: I don't see that you can get ar1 upper bound. How many

iterations of Heron's rule do you intend on using normally?

Answer: In this program Ivwas using three. On the 7093 program I

used two. You can figure out howmany you need; you do need at least two,

so that the last one gives you an error of less than 1 in the last place.

The one before that has to have at least a half-word length correct; it

is obvious that you won't get that half word correct with just a few

arithmetic operations. That i. because :the square root is too complicated.
You get indications of how complicated, a function is,from the entropy

theory of approximatiun; the theory is an attempt to decide how complicated

a function is to compute (the theory is at best rudimentary). There are discussions

which say analytic functions are infinitely less complicated to compute

than, say, nonanalytic ones which satisfy Lipschitz conditions. To see

more about this, look into a-survey by Timan (Approximation Theory,, Pergamon

Press). A man named Sprecher also does work in that area.

The digression (in the questions) may have frightened you into

thinking that to write a square root.routine you have to have spent years

studying obstruse theories. I guess if you want to write the best possible

square root routine, maybe you do. There is a limit to how near perfection

it is worthwhile to come, and it is not my intention to suggest that you

should write a program in this way, since only a simple program could be

optimized by examining a tree structure in this way. If tho problem were
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complicated, the tree would son get far too large to encompass in any,

machine storage you coald think of.I:L
In wandering through the-trees, it appeared there'were several func-!

tions which could conceivably be considered as approximations to a square

root. Every timi you get one of these functions, you find there are some

undetermined parameters, and it would be nice to know what they are.

Approximating Functions That Have Symmetry

Let me first mention, with an illustration, the existence of a theory

that tells us that certain functions can be best approximated, in a fairly

obvious, sense. Consider the case of a rational approximatiop

ax+b

cx+d

on an interval that is cunni-ngly chosen: 1 < x < 4- (The interval is

symmetric; but any interval whose endpoints are in the same ratio would do).

Naturally, we want to get our approximatior, to be as good as possible

in some sense. The most natural is relative error for floating point numbers.

The reldive error is perhaps most easily written in the log form.*

min max n ( - n3x

a,b,c,d 1!._2,<_ _l

In discussing a specific problem, I get rather different answers

Allernate ways to- measure relative error are:

1- f/F or 1-F/f

-What I have is

+n(f/F)

These are all approximations of the same thing; and they are monotonic
functions of each other; if I manage to decrease one, I've also decreased
the others,, especially if the error is small, so f and F ara close.
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sometimes, depending onwh:ch measure of error I've used. If instead of the
-above, I used the absolute error,

lcx+d

I would-,get different coefficients. An the-coefficients might have beein

harder to compute.

How/Man Coefficients Are There?

With some forethought about the type of function you want to approxi-

mate, you can often diminish the labor needed to get the coefficients. It

looks like I have four degrees of freedom while actually there are only

three (I can divide -all coefficients by a constant to make one of them 1).

[ Actuallyi there are only two coefficients that matter.

Question: I'm still worried about the fact that erors where the

approximation is greater than A are treated differently from the other

side. Is there very much difference there?

Answer: There is a difference between the way the relative form and the

absolute form treat errors. If you minimize one you get different coefficients

than if you minimize the other. Look at this example. Say you want to.

approximate something like the following, where the -slope goes to zero

near the origin.

--- approximation

absolute error
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The best linear approximation will have the maximum error in each section

equal, using-absolte error.

If pe error was biggest, I could make it smaller by slightly increasing

another, thus ,d6re sing the maximum error.

Using therelative error measure of the ratio, of logs, the linear approxi-

mation must go to zero at zero. Both approximations are, bad.

Had I dhosen aslightly less drastic function (one that didn't have

zero slope at the origin), the relative error linear approximationfiust

share the slope at the- origin and- is thus uniquelydetermnined. You really

use the first two terms of the Taylor series expansion.

/absolute error

/relative error

If we restrict ourselves to a sufficientl narrow region, the two

measures will not give very different results for the square root function.
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Summetry Helps

j have my problem, to minimize the rielatiye error. 'the problem is

not as coMplicated 8S it may seem, when applied to elementary functions,

=cause eik entary functions hae certain symmetries. The symmetry in the

-sq~iare root may not be obvious. Soconsider the sine function. It is an
?-d function and it would be odd to approximate it by something else. So

you choose 7, approximating function with the same sypuetry. Of course,

the Syr ietry Will depend on the i'nterval dhosen.

The suqmetr properties are tied in with the iderval o\ver which you

wish to approximate the function. What is the symmetry, in the region of

interest, of the square root? Well, I've somewhat begged the issue by

providing the interval [@,e-l.

Another aspet of these theories is that frequently YOLI,.can show that

a best approximation exists and is unique. Not always, unfortunately, but

Sfrequently. The square root is such a case.t

The, Best :Approximation

Let us assume that a best approximation exists and is uniqpe. Then,

observe what happens if I replace x by , its reciprocal. Then is

in the irorval 4 < < , and the approximation becomes:

b7- or -d9 +:c ~bg.+ a

The function is replaced, by one of the same kind; the function exhibits the

same symmetry properties as the square root.

tSome books on this subject are: J.R. Rica. The Aoroxiation of Functions,

Addison-Wesley, 4964 two volumes; E.W. Cheney, Introduction to Approximation
Theory, McGraw-Hill, 1966 (extremely good), and occasional papers By Dunham,
and a whole journal of approximation theory. Thes p snow lots of circum-
stances in which the relative error minimum exists and is unique.
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Then you can use the same criterion for rdlative error!

'Main mx hn rd

a,bc,d -1

This is just the problem we. had before. But remember I said that in

this circumstance,. the solution is unique. If i- ever find values for

a, b, c, d-which-work for x, they must also work for . Therefore, the

parameters must be related in, this way:

a=d And b=c

There are only two independent parameters.t

This is an example of the type of thinking that goes into coptimization

and here you see there is a-systematic theory. You'aren't always that lucky.

Sometimes you, may have to approximate functions in which the standard theory

turns out to be inapplIcable., The gamma function is an example. There

are degeneracies that turn up and then people are reduced to what amounts

to a certain amoupt -of intelligent trial cind error.

Obviously, in my tree, I had some ra - ional' functions like these. And

I was able to see what values of the constant would give rdb the best appro-

ximation. Then I' was able to work out if that program was as good as some

other program in t6 tree, On the 7090 a program like this was fine.

On the 7094, because of' timing changes, overlap and faster floating point,

it worked out that a different program was best.it

'For elementary functions, symmetry properties like this reduce by near two
the number of parameters to be varied to seek an optimization., It is impor-
tant that you find these symmetries, and use an approximating function that
-has these symmetries, to preserve as much of the character of the function
as possible in your implementation.

On most machines, you cannot guarantee that the square root of the reci-
procal is the reciprocal of the square rcot, since leciprocals are not
exact. But on a machine thdt used log representation, you would expect to
have to preserve that quite precisely, and you could.

+tThat program would probably also be best for the CDC, because the float-
ing point is so fast, and the fixed point is so horrible. On CDC, you

have to use floating point to do any interesting arithmetic.
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The Approximation for Starti,, Heron's Rule

So let's look at this approximation in detail.

X=221J-F < F<I

J = 0 or 1

YO 2I(C +  starting approximation for

the square root

Where did y corte from? I said it came from the. tree and that is

what got us going. You see, in the-tree there existed, among other sets

of instructions, an initial sequence that went like this:

CLA operand >-0 (leave out test for sign and 0 in this discussion)

STO X (op'd) store X

ORA 776 77,-7 fraction part: this picks J off the exponent

ARS 1 right shift I

ADD X fixed point add (J added to fraction of X)

ADD constant to be figured out later

ARS 1

STO S store the approximation

+ Heron's rule 3 times (coded, not in a loop as it is very short)

This sequence of instructions is extremely difficult to explain, so

I'll change it slightly for didactic purposes only. Replace the ORA 77677...7

by ANA 00100...0 and adjust the constant. The ORA i s.used because it

takes Z ycles and allows overlap- the ANA takes 3 cycles and suppresses

overlap.



19-18

Question: You were really able to discover that the OR with the

particular bits you, had there was -the same function as the- AND w.ith- the

other-bits and a different constant. How did you happen to pick those

particular bits?

Answer: It's not the particular bit pattern; it is that they are the

saie function. If I OR and later add, I get the same thing as if I AND

and later add a different constant. It's because we're dealing with posi-

tive numbers and the X recur3. What looks like one ADD node of the

tree also includes SUB, ADD-carry-logical, ADD magnitude, SUB magnitude

-- they're all imbedded in the same node of the tree.

W1hat Happens in the Code

~J=O ~ J=i

CLA (c-lear and add)

STO (store)

ANA (and of accumulator) J =0 J =1 in accumulator
18 binarypoint 8 bits

to the right of the sign bit

ARS (right shift) j= 0 2

ADD (fixed-point) 21 + F 21 -J+ F+
(21 isactually (but F+ 2 will carry into
biased by 128) w,exponent)

(21-J+l) + (F.

(21) + (F-

ARS(I)~ 11 1(.F+ l,) (I) +Y

ADD (I) + (~+C) (I) +(-F 4+)
(last two instructions recall J=O recall J=l
have been swapped,
doesn't matter except
maybe for overflow)



Question: There's got to be more to it than you just having figured

it out on a big sheet of paper with a V,e. You had to work out the func-

tions. and that meant a lot of interpretation of what all tiose bits mean,

and I think it is funny.

Answer: Okay.

We interpret the result as a floating point number. 'I' goes-into

the characteristic, the rest is the fractional part, and we have our appro-

ximation y0 = 21(C+ F/2+J/4).

Question: How long did it take you to run the tree?

Answer: I used to work on it in the evenings. it took several --

3 or 4 or 5. It did cover a big table. I would connect one branch to

another, indicating they computed the same function, using leftover

telephone wire. It really was mechanical; no great cleverness went into

it. Some equivalences, like ANDing one constant and ORing its complement,

are obvious, There could be more subtle equivalences that I might not

have noticed, but I was only dealing with rational functions.

Question: This rather reminds one of a chess game. There, at each

move you have roughly 15 moves. You seemed to look at all possible next

steps, not just the reasonable ones. So you had 64 choices and. you claimed

you went 5Q steps deep.

Answer: It didn't actually get that bad. Although I was prepared to

go that deep, I did know what the end was going to ,be like, and a little

of how to start. There were questions of ADD, ADD logical, SUB, but

those are relatively trivial. If it had been as bad as it sounds,, it ought

not tc have been done. After this was done, a man by the name of Hirondo

Kuki came up with exactly the code I have written with the AND instruction.

He had constructed it himself, whereas I had the one with the OR, constructed

by the tree.
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Choosing C

In order to explain what to do with the approximation, I will again

have to introduce an artifice. The question Which arises no is how best

to choose C. It is not at all clear that one value of C Should be chosen.

The program cou!d have been written to use different C's if J was 1 or

0. The approximation then would be:

Yo = 21 (Cj + F/ 2- J/4)

It will turn out that really oally one value for C is needed; 2 valt.s

don't make thatmuch difference. To see how this works, it is clear that

the value of I i irrelevant; so ignore 21 for now.

For the two values of J, I have two graphs.

slope1

a - 1 - i
slopel . . F

I'm approximating VF by a linear function of slope,! C has the2' J
task of shifting the line up and down in parallel.

I alreay7 knew I could approximate v by a line with slope 1

so that when F/2 appeared in the tree, it had to be scrutinized most

carefully.
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All I have t5-do is choose the vertical displacement so as to mini-

mize the error. However this is not the nicest way to think of things.

What I want to do is:

J =0 J=1

Yo= Co+ F/2 0  C I + F/2- 1/4 4_2
Do a transformation for J I

F 2, f1,

y

Y0 - FYO f Y

Yo= (2C + r)
1 <f<2

Now I have the same function for J:,=O and J = 1; it is just a

function of a different letter. And it is on a different interval. That

is tantai6ount to remaking, the foregoing graph as follows,:

slope 1 matches

at middle

... ... - F11

It is just a matter of scaling, so the relative error is sti'll the samie.

What Hirondo Kuki had done was to use a linear approximation that was

one straight line on the big graph. He did that by choosing: Co  and C1

so that tle two constant expressions would be the same.

= 2Co 1-2 C
CO = C J
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But my tree had led me down a different path. I still wanted to choose

one constant if I could get away with it. But what were the two constants

to choose for the two graphs?

The Best Value for C

}error

error{/

F

21 2

As I let the tangent be displaced downward, letting, C1  and C0  be

equal, the line will break. It will go down twice as fast on the right as

on the left. That is rather nice because it means that the error at the

left end has the same relative importance as the error at the right end.

So my object was to choose C in such a way that the error in the middle

is just as bod in a relative sense as the errors at eachend. That would

minimize the'maximum of the relative error.

It wasn't really the relative error I wanted to make small. It is

almost that. Recall what Heron's rule says:
/0 I+6o

If Yo: V=(l--o)
0 1+6 1+611o(Yo+ X/Yo) T v(- ) 7.6-)2 o_6 0-2

00
2

tIf I move the line down by reducing Co, I can also reduce C1  and bring

the line down, but since Co  and C1  are the same, you'll see that C1

is doubled in the constant (2C-4). So decreasing C. reduces the con-

stant in brackets twice as much and there is a break in the line.
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So it was 6 I wart4edta minimize. if I minimize the maximum that.-

60 takes over this range, then I get the best approximation I cah-possibly

get, when the approximation is as bad as it ever becomes on that interval.

The right value for C worked out to be:

C - 1 4826004..1

= .3670566308

The Best Value To Use For C

So C. is a little less than a half. Needless to say, although I

have the Optimum value for C, that value is not actually optimum. By

this time you would expect that every time you have accomplished your goal,

there is yet another consideration. So let me say that it is true that C

should not differ from this by more than a few units in the last place.

The fact remains that in order really to minimize the error at the very

end of the program you have to see what happens to rounding errors. It

turns out that by the time you're finished with the iteration it is really

the rounding errors that are inuch more imbportant than by the error caused

by the fact that we are using an approximation in the first place and

making it better by Heron's Rule. The error, committed because we use

Heron's Rule threo times instead of using the exact square root (usually

called truncation error, in the sense of truncation of an infirljte process),

turns, cut to be extremely small.

To within a factor of two, here are these 'truncation' errors.

60 < .0177

l < .000313... after one application of Heron's rule

2 < 9.841 x 108

6 < 9.68 x 10l6
3i
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After 3 applications of Heron's rule, we have a very accurate result,

in the absence of rounding error. We only need 27 bits, which is 10 8 or

1079. The error is-down to, 1 -13.

Question: You said that you wanted to pick a C accurate to within

a few, utp's, but it seems that actually you can have quite'a wide range on

C, and still have the truncation error small enough.

Answer: Thatis true,, We could still get the truncation error small
even with C T .hat's what Kuki did and his truncation error was down

to 10-10 or so. -But there was something else I wanted. Remember, this is

for didactic-purposes as well as, for a program and I wanted to do really,

well, to do the be&t possible program. So 10-13 is how small 63 could

be without rounding errors, and if you-want to keep it that small you

cannot change C by much.

This tells us that the program is now feasible.

What If You-Use a Less Accurate C

If you use the less accurate value for C (say I) so that 63 is

roughly 10-10, instead of having 63 ~ 10 13 . the machine will be able

to see the difference. It shows up in the running time:of one of the tests.

You have to do some tests to find out wiat is the best value for C and

how big the error is. In order to be able to make that decision, it'll,

be quite important that there be 13 zeroes in 63. If I had only 10 zeroes

there, the time needed to find out how good the program was would have been

multiplied by 10.
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Question: But you don't have that marty digits around.

Answer: Actually, when you try to'minimize the maximum error, it

doesn't look like: kJ but rather it is like V . If you change C

from theoptimum, the error will change more abruptly than-is customary

for minimization. So I really have to stay within a few ulp's of C.

Question: You just said that if C = 1, you do better tnan a few

ulps. You still have more accuracy than the machine can hoTd.

Answer: That's true, but on the other hand for the best C, - 10-13.

If I change C. to ,63 - larger by a factor of 103. The error

iS a thousand times as big, by using a slightly less accurate C.

The machine will.see that error, you'll see.
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Question: That's a different argument than you've been using for why

you wanted the best value of C.

Answer': I only want tht,,nch precision in C because I want to know

what the best value of the constant is. But you're right. If I used

a value for C as different as .5, I would clearly be able to get an

adequate square root routine and that's What Kuki-did.

Question: And it would be just as accurate as yours?

Answer: NG, that wduld-,not be true. Kuki's routine has an error of

.5001 ulps, while mine is .50000163, and there are otherlittle discrepancies.

Question: Is that-a large difference in error?

Answer: Actually, it looks very large to me right now. But as far

as the ordinary innocent user is concerned, he'd not be able to tell the

difference, except that my prqgram was faster as well as more accurate.

As long as I'm going to change Kuki's program, I might as well change it

to a program that can't be beaten.

Think of it in practical terms. If every time someone thought of a

way to improve a program epsilonically, he said "come on now librarian,

put this on the system's tape", whatever he hoped to save the users would

be blown by the cost of the new l'ibrary, update. SQ I said I'd make mine

sufficiently good that it won't be worth someone else's while to introduce

a new library update.

Question: Hadn't that been reached with Kuki's .5001?

Answer: No, his program was a lot slowerthan mine, too. He took

77 microsec instead of 63.

Question: What if you had used the enact same program, just with a

constant closer, to 1-
2"

Question: Wouldn't you have ended vp with his error and your speed?
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Answer: Yes. But 1 was determined to gilt the best possible program.

You're-trying to ask me, was it worth the mfrey spent. Of course it wasn't

worth the ,money ,spent if you want to figure it in terms of the number of

happier users. I probably tested more numbers than will bWrun through the

SQRT in a year on the 7094.

-But we are trying to see how well we can do. Fop' the practical question,

I hope most people would have stopped where Kuk'di'd. We can't afford

too many guys like me. But we can't afford to dowithout them either.

How Ac urate 'Are the Resu'lUts.,?'

To find out how accurate the final- result is, we have to examine the

coding for Herons' rule.

STO X

STO 'S approximation

CLA X

FDH S to get X/S in accumulator

XCA

FAD S floating a4d (could have done: fixed add if charac-
teristics lined up, which they usually
did):

ADD -1 division by 2 (subtract I from the charactc-istic)

STO S

This is the setup for two of the thre tieron's steps.

We have done

s (s+ XlS)

Truncation has occurred in doing X/S, and in doing +. This has

introduced rouindoff.
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- 3

The third Heron ruleputs in a round instruction after the ADD -1.

In the first two cycles of Heron's rule, the error is going to be smaller

than the,numnbers quoted for the 4's, even taking rounding errors into

acrount. RuNding errors actually make the approximation better than it
otherwise would have been. The only possible exceptions would be if the

original ztpproximation were sufficiently close to the root that rounding

errors could make things worse. But from the -graph, that only happens f or

a very few numbers (where the straight lines cut the, graph). For allt

the -other numbers, rounding errors actually help,.

If you believe that everybody who writes programs- does this sort of

thing,, or should do this, you've missed the point. The-issue is to see

how well we could do and how much it would cost.

Question: Why did you write- out Heron's rule three times?

Answer; The index register instructions take 3 cycles for testing,

3 for setting and 2 for restoration. Why bother when the loop is so short?

Kuki used a loo ; that's why his takes longer.

- 3
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Review

In getting tte first Approximation th the square root,. we make linear

.approgiations on each of two intervyIs, r j] and [1,2], where the

secind interval is really 4 translation of the St atiir,, en J = 1. M6

- get two different, but paralel, lIne segments because iwe insist on. u-0n,

the same vtlee Of rf for both graphs.

: ®®

0

- F

12

The values. of 60  that you would: compute at points 0.9 @9 a,;d

would,,all be the same, although at Q it has the opposite sign. At point ,

6o Would be a little bit 'better.

C is chosen to minimize the maximum of the relative errors as -it

happens in terms of the 6-s. The reason that you want the minimum for

26- is that for each step of Heron's rule, 6Al 2 "

Once we know what the first error is, we can work out what the next

several will be. Then we can tell how many steps of Heron's rule are

needed. For example: 6 2 < 9.84i x 10 This is soewhat larger than

we want the relative error to be; 2-26 z 1.5x 10"8; so we can't stop

with only two iterations.
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03 < 9.685x 10- 15 < 10- 14 - (without rounding)

Therefore: < rel. error in y3 < 2x 0 1  (error before rounding)

Rounding Errors- Don't Hurt Sometimes-

Now, let-us look and see why.rounding errors, up to the third itera-

tion, do 'not make things appreciably worse. Here is the code again.

STO S "OT

-CLA A

FDH S A/S in accumulator

exchange XCA

FAD S

SUB = 0001000000000 divide'by 2 by subtracting from exponent

STO S = -(S - A/S)

00 this again

At the end of one iteration, the error, 6l would be < .000313, if

we had conitted no rounding errors. What I will show is that the error

actually i! ,no wqrse than 61, even though there have been rounding errors..

We are only interested to know if tile error is appreciable and not

just a few units in the last place of the square root. So-s.ay that the

error is close to the computed bound, that is, about twice 61. Then it

looks like a rounding error or two could conceivably make thIngs worse.

But they don't. And that is because in Heron's rule, the iterates, except

possibly for the first one, decrease toward the square root. The approxi-

mations are successively decreasing.

Heron's rule is just Newton's method applied to the graph S A.

i You draw tangents at the points ytagntIi
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o ' .or

2Yl Xo

You can also see that they decrease by showing that

3 S+A/S) -S > Q

You, do have to have S > X for this to work, :but after the frst iteration

and maybe before, it will be.

The only effect rounding efrors will have on this monotonically

decreasing sequence is to maybe Speed things ,up :a little bit, if you're

far away. Why? You compute A/S and truncate so you throw a little bit

away. The division by 2 doesn't affect anything. Then you do a floating

add and throw away a bit more. The net affect is to make your approximation

a. bit smaller than it would have been without rounding errors. But you

could orly object if you were 'so close to the root that throwing: those bits

away took you below the root. We aren't anywhere near" that Close when the

error is big. So the error bounds I quoted are certain to be valid, in spite

of rounding errors. This is a rare circumstance, when the rounding errors

help.



19-32

Rounding the Third Time Only Is Sufficient
r£

The third application Of Heron's rule includes a round inst.uctio.

CLA A

-'-FAD S

SSUM

L -STO S

If the machIne-had a rounded add you ,could use that instead of FAD 3nd

FRN, To see -why Ahe FRN is all that is needed, we need to look atwhat

is in the registers at this point.

In a double length register called the AC and MQ, we will have:

'(S + A/S)/2

A/S has been truncated. After do'ing the add, there may be some bits in

the MQ (the lower half of the word). FRN will round the double length

word and put the single length result in the AC. It adds half in the last

place of AC (which is adding 1 in the first place of the MQ).

The truncating error in A/S is of no consequence. Wliy? Normally,

at this stage (the third application), S > VA by a little. Hence

A/S < vA by a lit;le, and A/S < S. Now, when I add A/S to S, the re

are two possibilities: the exponents are the same, or the exponent of

A/S is 1 less than that of S. (Remember, the error at this point is

roughly 62 or 10-7).

Case 1: exponents equal

filA2S i/ / digits thrown away

becomes first bit of MQ because of the overflow when adding
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Al of the other digits that hive been lost from A/S would have played

no role anyway, because when I round, I -add 1 to the first bit of the MQ

and I do have something there. The truncation didn't matter because I

merely threw away digits i would not have looked at even had I had them.

Case 2. exponents differ by 1

+ 111, S I

first bit of MQ: it comnws feomA/S
or 0

Again, you can see that the digits iost from truncating Aj/ would

not have been used.

Question'.' What if your machine obeyed the rule ound to nearest eve'?

Answer: Then I might want to know what those other digits were. But

remember, here I'm talking only about a 7094. 1 guess this is the first

situation I've seen in which roundin to nearest even might be less than

advantageous.

S Cannot Be Much Too Small

You should remember that by this time our approximation S is extremely

good. Its relative error s down to around l0" . So my assumptions are

valid, unless our approximation was so good that a buncK of things happened

that couldft happen, so tha* AiS is too big (S < V'k). Then the Situation

is:

11 A/S 1/////
+S

Then the lost digits would matter. But this could only happen if S is
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appreciably Smaller than it should be; one or two.units in the last place

won't do, because that won't happen. The total error in each iteration is

less than a unit in the ltst place. How could I possibly jump past the

square rootand be' too small by a UMi-t in the last place?

Question: Could that happen if your initial approximation was too

small?

Answer: However bad the initial approximation was, I've done a couple

steps of Heron's rule. They tend to make the approximation too big unless

I was already so -1pse that the rounding error dropped me down. But the

total error is less tian a unit in the last place -- I unit from the divi-

sion and' 1 from the-add, but there is the factor of 2.

If thO romnding error were exactly a unit in the last place, the situa-

tion above (with exponent of A/S > exponent of S) could occur only if I

were dropped on the wrong side of a power of 2. But as we will see later,

things work out even in this case. I claim that thii will never happern

Thus the digit.s lost in truncating A/S don't matter. On the last

application of Her,0's rule we round normally, by adding half in the last

place to a number whose relative error is 2xlOr
4.

Incorrect Rounding Can Happen

We run a certaiinrisk, in that if we looked at the correct square root

just before rounding -it, the root would have, in the MQ (second word), a

0 and then a long string of binary l's and some garbage. Because our

number is in error by 2x 10- 14, (more than a few units in the last place

for double precision), it is possible that what is in the MQ is actually

bigger than that, namely a 1, a bunch of zeros and then some bigger garbage.

Then you see we would round up instead of down.
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The question is, hcw often does this happen? This is the only vay we

can get an incorrectly rounded result. In all other circumstances, we have

eve.rything that anyone could want.

It is actually possible to discover how close we come to always return-

ing the correctly rounded result. Of course, you can't do this for many

functi6ns, but we'll do it for this one.

PIaying With Last Digits

We will digress to consider some examples of playing around with last
digits, to get a modest feeling for the digits and the way they behave. That

is, I'd like you to get used to the integer theoretic approach to rounding

errors. When I write it on the board, it will, seem much more complicited

than it reallhy i, simply because I have to write it down. Once you get

used to it, you will be able to follow, fairly easily, calculations of this

kind on ainy machine where the calculations have any value.

I will, consider what happens to Heron's rule for a certain set of

approximations, namely ;humbers very close to I., whose square roots we

-w&nt. Some interesting things happen.

So let us look at numbers of the form:

A :l + 226 n n is a small integer > 0

S X = 1 + 2 27n - 2 55n2 + ...

just -the power series expansion for (I + 2 26n)1/2

Now, how do Re round root A correctly on our 27 bit machine? If the

leading digit is 1, the last digit is 2-26. F has a 2-271 in it, so

there is one digit to thc right of what can be held in 27 bits. And then

there is another term (2"5 5 n2) to be subtracted off.
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If n is odd, there is an extra half sticking out into the HQ, but then

some small number gets subtracted:

-'-
io .......o

*..'xxj MQ

When n is even, v is really a multiple of 2-26 andwe have:

- . ' ;-oxxxi

1ll...'lxxx MQ

Therefore, to round A correctly, we should use:

1 + -[largest integer in i]

If n, is even, [ = , and we have

I+2-26 n = i 77ny =l+2 l+2 -27

If n is odd, the extra half that sticks out into the MQ will get

subtracted away, so the rounding is correct as stated.

However, our S may not look like the power series,. We may have:

= + 2-26 [n] + k where k is a modest integer > -T
S2

(S2  could be small by a unit in the last place.) Now what happens in Heron's

rule?

A/S2 = (1+ 2
26n)(1- 2 26([]+k) + 2-52([n]+k)2

using a power series for 2 = (1 + 2"2 ([]+k))l
2

A/S2 1 + 2-26(n- rn,3-kQ + 2-52([n,] + Q)([J+ k -n) +
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That's the quotient, but of course that is not what will happen when, you

truncate. What will happen when you truncate depends-on whether the term

in 2-52 is positive or negative. So there are some conditions on- k to

check.

We've had an argunent already that showed that whether oA/S is trun-

cated or not is irrelevant. 'If you don't believe that, run through the

cases when k is a small integer, and see What happens.

Unfortunately, if k is a negative integer equal to n.], or

([+k -n) = 0 so that the term in. 2-52 vanishes, you have to look at

the next term in th- series to find but what is going to happen.

Question: When you say truncated do; you mean truncated in the sense

that numerical analysts use it?

Answer: No, I mearn machine chopped.

Question: Then, why do you care about things far to the right?

Answer: The quotient is exact if you write out the whole series, but

the machine only writes but the first 27 bits of it. Those 27 bits will

have contributions from later terms. If the 2-52 term is positive,, the

bits simply get thrown away. But if that term is negative, 1 will be

subtracted from the 27th bit and this will Oj;er the truncated result. So

you have to look at the sign of all the ter ito !'ter the first two.

Now we add S and divide by 2.

A/S2 +S 2 = 1, 22 6(n-[j]-k) + 252( )( ) + .. + +k)

2 + 2 (n ]+[jk+k) + 2"52( )( ) +

- 2 + 226n + "52( )( ) +

(A/$2 +S2 )/2 = 1 + 226 +2 + -

There are two possibilities for the 2-53 term. It could be positive
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or zero. Then, if n is odd, adding half in the 1,ast place will bump up

the sum.

"Spe-ifi Example -of Incorrect Rounding

n=l 'k=l [ -j]=O

n. 0

So A = l+226  And S T +2

A/S2  1
(A/S2 + S2 )/2 1 +

This then gets rounded ,up to 1 + 2-26 'or , which repro-

duces S2. That is bad because, the square root of A is actually a little

less than 1 + 2 , and, so the result sh ,-,i d Yave been rounded down 'to I.

It is easy to do this analysis for numbers A a- little-bigger than I. If

A = 1-2- 27 n (a number is a little less than 1, the leading bit represents

a half and the last bit 2"2), similar, but more interesting things happen.

The only way to seewhere the bits go is to work with these nur, bers with

pencil and paper. You should verify for small odd n, that for small k > 0,

you round up when you should round down.
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So you see that there are cases when the error in the square toot will

be more than a half unit in the last place, that is, when the root is rounded

up instead of down.

Now I want to study these cases systematically. If you thought that

this probleii arises or.iy when taking the root of a number near a power of 2,

you are in for a surprise.

Decimal Examole of Incorrect Rounding

Here is an example in 4 digit decimal arithmetic. This problem can

arise with digit patterns that look essentially random.

Y,23790000 = 4877.4994-

We are using Her)n's rule, and all we 'have to do is make an error of

.0006 in the third application (almost correct to single precision before

the last application), to get an incorrect result.

Heron's rule would have given us:

4877.5

which would be rounded to 4878; itshoulV have been 4877.

We will study this phenomenon systematically mainly because it can be

done and not because it has some overriding commercial value. It really

is an example of what you can do if you are determined. Having done this

analysis, we can contemplate doing analyses for other functions, should

they become necessary.

Question: What if someone published a routine similar to yours and

stated that the error was no more than 2 ulps? Would you accept that?
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Answer: It would be a true but terribly pessimistic estimate. He has

overestimated by a factor df 4.

Qaestion: What if he said 1 ulp?

Answer: Then I would ask him if the square root wvas monotonic and he

might not' be able to prove it from that estimate. Remenmber that one of

the specifications of the program was that if you increase the argument

the square root wi l not decrease. Or that the square root of a perfect

square recovers the number.

Question: Your estimate will be more exact and give you those results?

Answer: My estimate will be sufficientl, close so that gettihg zhdse

results will be easy. We've got that now. I don't really need to find

those 29 numbers. I get-what I want by computing, the square root almost

to double precis:ion; it's a little too big by some numbers near the end

of the second word. If I take the square root of a perfect square, the

square robt fits into the top word; the extra digi.ts from Heron's rule go

away when I round.

Question. That ignores truncation errors from subtracting and di-viding.

Answer: No, I showed that truncation during division is irrelevant.

So I have computed the correct square root plus some garbage far to the

right and then I round. Square roots of perfect squares come out.

Monotonicity holds because if I increase an operand by one unit in

the last place, I increase its square root by roughly half in the last

place, and that increase, in the upper part of the MQ. is not affected

much by what's in the lower part of the MQ. Even if the garbage decreases,

there is enough increase at the upper part so that the result of rounding

will not be to decrease the square root. The root may fail to increase,
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'but it won't decrease after rounding.

" X , > .x
may have smaller garbage but is bigger

than S by -1/2 ulp

So the last step of Heron's rule for S will give me sumething

bigger than the result of the last step for 5. Certainly not smaller

Then I round. And monotonicity is preserved. I can only prove this With

an error bound of half in the last place.

We want to find out what is the ultimate accuracy in our square root

routine. We have:

SQRT,(X) = v(l + e) rounded to 27 bits

tel < 2xlO14

5(l+e) is the number that sits in the registers if you keep the

digits that were truncated during division. It is what you have before

you round.t

Enumerating the Wrong Roundings

Now we shall enumerate those cases in which the rounding is done

incorrectly. Instead of having X a fraction, I, will consider X to be

an integer of the form:

tThis program was one of the earliest that was proved to satisfy a certain
set of reasonable specifications. There are others that have these pro-
perties, like, zero fihders.
This algorithm will work on the 6400, as the CDC has essentially 'the

same structure as the 7094. Division takes about as long as multiplica-
tion, so there is no reason to prefr miltiplication. The analysis will
then involve 2-47  instead of 2 '. On the 6600, the situation is quite
different; division takes 3 times as long as multiplication, and multi-
plications can be overlapped; so this algorithin would not be the most
efficient.
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X = 22 6 M case I
226 M2 2 7

X = 227 M_ case .2
4.

M -ia 27 bit integer.

Once you have written down this .27 bit integer, changing it by a

factor of 2 could drastically change the square root, whereas multiplying

by 4 doesn't change the root except by a factor of 2 (wifch doesn't matter

on a binary machine).

There have to be two cases, differing by VZ; the characteristic is

either even or odd.

Define N as the root of X and'if you have done your job properly:

<
N _

226 < N < 226V7 case 1

2 26VZ< N < 227 case 2

N will just barely fit into a~singie precision word. N is the

correct value you would get for the square rootof X and then rounding

it.

You write X = integer + fraction, where the fraction is less than a

half; then things are correct.

If you write X = integer + fraction bigger thana half, then

X = integer + 1 - fraction less than a half.

X could be halfway between two integers; -then you use a convention

for rounding. But that won't happen.

The interesting cases occur when X is near one bound or the other;

then you could easily make a mistake. Let's try to see just how close,:
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If N 'XzN+1 then

24X (2N +1)

But I have to know what I mean by approximately equal (z)4-

I wilt have trouble when 4X(l+e), which is,' after all, what I Will

have computed, is approximately equal to, or indistinguishable from, (2N+l) 2

I,will. have problems when, the set of numbers, {4X(1+e)}, lel < 2x10 1 4 ,

is included'ir, (2N±l) 2 .

{4X(l+e)_ (2N+fI) 2  lel < 2xlO14

As I vary e, I will pass back and forth through the division points

between the two cases. Those are the points where you decide to ro4nd one

way or the other.

The; situation can only be interesting when:

(l+e)'2(2N±l) 2 = 4X = (2N±1)2 - C

C can be positive or negative. Whi 'e ,e runs through the values

-2x!O - 14  to 2x'0 -14  through what set of values will C run? Now

notice: 4X is ,' big integer; (2N± 1)2  is also an integer; therefore C

must alsobe an integer. The values used for e are limited in that

2 N ,2
(l+e)- k:2N±) must be an integer also.

How big is C? By looking, at the two extremes and at the bound on e,

we see:

IdC < 4xlO- 14 • (2N± 1.)2  it can,'t be any bigger than this,

We have the following relations:
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(2N 1)2 C Md 228 Case i t

- C !od 229  Case 2

CI  4x4X= -- <2000 in case I

<'4000 'in case 2

Thare really aren't verymany values of 'C. There are about 4000 in case 1

and &8000 in case 2; that's as many as I've got. A few thousand is like

nothing for prograiining. The situation is actually not as bad as this.

It looks like all I have todo is to let C take all those values,

solve the equatiofi for N, find out what X is, and-compute the square

root and see if I get N. That's all. But it is not at all clear how

you'd solve that equation. It wasn't Clear tome for quite awhile.

Solve By Recurrence

A man by the name of Heilbrand, a renowned number theorist, said isn't

there a recurrence for things like that. The one he gave me didn't

work, but there was one.

We willl pursue the recurrence by which you can solve equations of

that kind. We want to solve:

2(2N ±1) E C

Case 1 226 < N < 226/2z (2N± 1)2 E C mod 228

Case 2 V <22 6 < N< 2 7  (2N ±1) 2  C mod 229

Given C, find N. That's the problem.

tThis means (2N ±1)2 = C times some integer multiple of 228

'tIC1 < 4x10" 14 • 4X because 4X very nearly equals (2N±1) 2 .
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Then we observe that

C I- 1 rood 8

That cuts' down on the interestinpg numbers; there are b6ly as many.

We are down to about 1000 numbers in case 2 and 500 in case 1; that

is so small as to be almost negligible.

All I have to do'now is solve the equations for C in the class 1

mod 8. The recurrence involves solving those equations 28 or 29 times. It

just takes shifts and a few logical operations, so it isn't very expensive.

You could make the program take less time than a division.

We now write the problem as

Z =- C mod 2m when C = 1 mod 8

Z will be 2N±1; you take your choice.

Bounding Z

The first question is: how many solutions have we got. There are 4

solutions, or there are none.

(2M-z)2 Z2 mod 2m (is really (-Z)2)

I7 Z is negative, compute 2M-z instead; that doesn't change the
square. If the value of Z is rather big, bigger than l-2M, then com-

2'

pute (2M-Z) and get an answer that is smaller than half of 2

So I might as well assume:

0< Z < 2M'l

C = (2N ±1) mod 2 or 229

C = 4N2 +4N+1 = 4N(N±l)+l
Either N is even, or N±l is even. Therefore 4N(;iql) is a multi-

ple of 8; therefore C 1 I mod 8.
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2 cannot be xero or 2MlI because Z is odd. Notice that C, is

odd isodd Z is odd.

I, can go farther and observe:

(2M1Z)2 _Z2 mod 2m

This happens. because of the factor of 2 that appears in the square-.

Thus, Z can be further reduced to:

0 < Z < 2M-2 Z can be transformed
to this iange

Yhe' four solutions are:
~~Z, 2m'lZ, 2m-z, 2~+

Only 'Four Solutions

I've shown there are four. Are there any mdre? No, and let's see why:

Suppose Z2 _ Y2 C mod 2m

0 < Y < Z < 2m- 2  C l mod8

there be two solutions in this interval (would give 8 total solutions)?

Notice that if 0 < Z < 2m2, none of the other solutions is in that interval.

Z and Y must be odd (their squares are odd).

0 = Z2_Y 2 = (Z-Y)(Z+Y) mod 2m

I can factor 2m times some integer into those two factors, This is saying

that:

Z-Y = 21p i >1 p is qdd or zero

Z+Y = 2Jq j > l't  q is odd

'- ,Z) =2 - 2 2 M-1 z + Z2  
2M(2 M 2-z) + Z m z2 od 2

i j must be > 1; both Z and Y are odd so their sum is even.
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When you multiply these two ,numbers together you ivst -get a4 ntriber

-congruent to 0 mod 2m This meanS that:

i+j >m

I wil show that this implies Y and Z are equal. First I can't

possibly have both i > 1 and j > 1. If that were true, there is at

least a fattor of 4 multiplying p and q. Then when I solve these

equations, Z and Y come out even.t That can't,}happen.

Therefore i >1 and j >I is ruled out. So~we try i = 1

" j.> -i

2-l < 20q Y + Z < m 1 tt hard to understand

Anything th(it's hard to understand can't happen. So this doesn't happen.

The last case to try is j = 1

i > m-i

2'- < 2ip =z -Y < 2m-2 or P =O

Therefore, we must have P = 0, -or Z = Y and. there is oinly one solution.

The Recurrence

Now we need the recurrence. I solve it for m'= 3,4,.,28,29.

Set: Cm = C mod 2m 
0 r Cm < 2m

We are using the lower m bits to represent C. If C is negative,

I go through 2's complement and take the bottom m bits.

C3 = l (since C- B lood;8)

Let Z =,I. Suppose for any m we have

7Z-Y = 4.2i p

Z-Y - 4"2J'a

2Z = 4(21 p+2 J q) 2(21 p+ 2q) Z even Y even
"Y < 2m , Z < 2m; Y+ Z < 2.2m ' 2m'
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Z C mod? (true when n 3)

Assume 0 , < 2m 1 (can always be done). If Z2 C mod then
set Z Zm. Else set Zm+ 1 = 2 m z

It is a minor exercise to verify that in fact for a solution at stage

M, satisfying this bound,, we end up at stage m+1 With a solution satisfy-

ing the corresponding bound. The computation involves nothing nre than

Shifts and complementation. We do this, up to 29, for eachgvalue of C

-congruent to 1mod 8. From the values of Z we get values of 'N, from

N's we get X's.; we feed these to the subroutine SQRT and. see what it

computes. If it-computes N, good. If not, we've found a number for which

the error was bigger than half in the last place and it rounded up.

This was done, and on 29 occasions these numbers popped up. Actually,

it happened a varying number of times depending on G. C was adjusted

by diddling th6 last couple digits to minimize the number of cases.
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Review

I've shown :how yott could hope to prove claims of

accuracy for a SRT program on a machine of a certain structure. There

was an integer theoretic equation whereby you could hope to-generate all

the arguments for which the- n,±&hine might be expected to be less accurate

than to within half a unit in the last place, and inspect them. There

were only a couple thousand to look at; on the 7094, only 29 gave errors

that were too big. Of course, that example is rather special. Normally

youcannot analyze a program as accurately as that. And even if you could,

normally you wouldn't; there is a limit .n how much people are Willing

to pay to know everything.

Question: How many other programs have been analyzed like this? It

seems that the SQRT is more susceptible to it.

Answer: Oh, infinitely so. I've done analogous things "or the

cube root, exp, log and trig functions. The last three re quirea very

different point of view and they are much harder to cope with.

'Question: What kind of error bounds do you get?

Answer: Around .52 ulps. If I get .513 ulps, Im happy.

Question: Did you find a similar 29 cases?

Answer: Oh, no. In log, etc., the number of arguments that approach

lhe error bound would be substantial, although none would actually reach

the bound.

Other Aspects of SORT

Now let us look at some other aspects of the SQRT program. We shall

see what difficulties arise when we try to carry out a similar analysis

of a simple routine like SQRT on another machine.

The code wil look essentially machine independent, but it is not



19-50

because it will not function on some machines. Then we will try to see

how the code couid be changed to make it as nearly niachine independent as

possible.

FUNCTION SQRT(X),

IF (X LT. 0) complain (see [6])

-SQRT = 0.

IF (X EQ. 0), RETURN

Y = (l.+X)/2. first approximation

I S QRT = (Y + Xk/Y/2. '

IF (SQRT .EQ. YJ. RETURN

Y= SQRT

GO TO 1

END

Notice that this uses a poor first approximation to YX. Where

did it come from?

(1+X)/2

(I+X)/2 is tangent to the graph of rX at X = 1 and is bigger than VX

everywhere else. So it i,5 an acceptable approximation to use to start

Herons rule. Remember, from now on, applications of Heron's rule produces

a descending sequence.
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Question: What about rounding errors in heron's rule?

Answer: In the absence of rounding errors, -whichwe'll consider for

now,, you would hope to get a descending sequence.,

Termination Test

The test for temination is a simple one. On any machine, there are a

finite number of representable numbers and therefore, sooner or later you

must run out of numbers. And then it, stops.

However, arguments like this have a certain fatuity on machines like

the 6400, where the number of distinguishable numbers is 260 To Since

doing anything costs-about a microseco.id,, it would take 1012 secs to exa-

mine them all. Isn't that rather long?

Butwe know that for Heron's rule, the argumentis reasonable. As

soon as you have l correct digit, 7 more applications of Heron's rule will

give you 64 correct digits, ard that's more than the CDC can hold. Getting

1 binary digit is not hard. If your first approximation is terribly

large, Heron's rule will bring it down roughly by a factor of 2;. since no

machines have an infinite exponent range, convergence will eventually get

faster. It could conceiivably require a thousand iterations to get 1correct

digit; then 7 more are enough. So it is machine independent.

We can see that this will work on a machine for which, we know neither

the base nor the precisioo,. It may be slow. But people used progrms like

this until they discovered that users liked to take square roots of numbers

not very close to 1.

I still want to analyze this program; getting, the first approximation

is a technical detail that necessarily depends on the structure of the

machine. The rest of the code is more interesting.
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This code would probab1y not, run on an 4IBM650. it ouIdn't-, because

the test IF(SQRT EQ. Y) is too demanding. On machines of this typei the

sequence that should-be monotonically decreasing isn't. (Try the example

of taking 4-0 in 2 decimal, truncated arilthmetic.) After a while, the

approximations wil'l oscillate around the correct result. So the test

always fails and the program never stops.

Weaker Termination Test

The first thing you learn, then, is that you have to put in a weaker

test on SQRT and Y.

IF(SQRT .GE. Y) RETURN (this will do)

Why will this work? Your first approximation will be toobig, or be

only too small by I ulp. Too small by a unit in the last place is a

very gqod approximation, so you would accept it,

Using Heron's rule, you expect to decrease monotonically toward the

square root. But a rounding error may throw you past the root, but only

by a unit in the last place. There is a unit error in X/Y. You add and

the right shift necessarily reduces the error to 1. Rounding brings the

total to 3/2 units. Division by 2 on a nonbinary machine may give another

1/2. So the total is 2 in the last place; that could be considered quite

respectable.

We Can Do Better

It is possible to get slightly better accuracy, on most machines by

the following dodge:

SQRT V - (Y-X/Y)/2
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This co'de takes -,t'intage of the fact -that on-most, machines,, subtraction

of numbers Very close together is done exactly.

X/.Y is still 'in error by 1 ulp;..but X- X/Y' wil l be precie and, be a

very tiny number. Now division by 2 car, also be done precisely- even dn d

nonbinary machine.,t The only other error comes from the other subtraction;

this normally occurs satIsfactorily There are exceptions, though, say on

the CDC; but then division by 2 introduces no error. What you lose' on the

swing you gain on the roundabout.

,On hexadecimal, machines, this trick is crucial. On the 360, with its

guard digit, the subtraction is done precisily and the division by 2 no

longer causes a rounding error. This is the trick used to code SQRT

on the 360. The first approximation is better, of course.

The error has thus been reduced from approximately two uips, to at

most 1 ulp, for hexadecimal machines. You only commit one rounding error.

By using a similar dodge on other truncating machines, we can get

the error-,down to 1 unit in the last place. Knuth used this when he wrote

the SQRT for the B5500, an octal machine with rounded arithmetic.tt

The point of the FORTRAN code was to show that you could do the job

in a machine independent way, insofar as you can do anything in a machine

independent way , if you are willing to wait long enough.

t Y.-X/Y is tiny, so it has lots of zeros. Dividing by 2 on any even base
machine can at worst add one digit t6 the number and that can still be
represented exactly.

Itlt is interesting that people who have published analyses of SQRT routines
did not use this trick and obtained even for binary machines error bounds
of 3/4 ulp; it's a bit hard to see how they got that. This is in a book
by Householder on Numerical Analysis, 1953, and by John Todd in some
numerical analysis notes that he's been using for the past 40 years.
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20. STUDENTS' REPORT ON CDC 6400 SQRT,, CABSAND CSQRT

This lecture was a report by the group of students who worked on

improving the COC RUN FRTRAN library versions of SQRT, CABS and: CSQRT,

Our basic method is stated by scaling -the argume jt to lie between 1/2 and

2, getting a, rational approximation, and then apilying three Heron's rules.

The scaling was done by writing x F*2 21+J,, J-0 or 1. ,The

rational'approximation to F x was

ai,+'ba+b because the interval is symetric x< x v7-

cI x+d bi +d
1-r.2

c + xwhere c = ab

The intervals to be approximated over are

1 <x < I and I <x < 2

We have an approximation on _ <-x v7 . So notice

f (x )  r

f(cx) T

Now we have -L< x < I or I < x < l If we pick al v s a2
a

we get the needed ranges above. We took an approximation to the square root

on one range and mapped it into an approximation on another range;, it is easy

to compute on the first rango; we intend to apply it on the second range.

Now that we have an initial approximation, we will apply Heron's rule.

Recall that after the first Peron's rule the error is greater than 0.
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~absolute error after one
,~Heron's rule

IJerror.lX 10- =

y~ so now e 26 2  l0 8
0

A. rounding, error at this point would be 10l4. Comparing this to the

eii,ror obf 10-8, we saO that p4ounding erfor cannot change the graph much.

After one *Heronls rule, we wanted to drop that error graph by some

absolute _ valiJe and still kbe .the- relative error -nice. We want to drop tbe,

graph such that the relative error-at y is the samie as the reiative 6rrcr

at 1; at y, -the rel-atives drror changes most; at T, the error improves

the least. Say we drop the graph by S

=E-S

1/y

You; .nAke the worst errors the best; possible by choosing S in :this way.

In doing Heron's rule, division 5y ? is acconiplished ijy subtracting

I from the exponent, but as long as you- are su4btracting something anyway,

why not subtrac-t S from the i nteger part as well; i t doesn 't lcost you

anything except the memory reference to get the constant.

You may get an unnorma-lized nuriiber when you subtract S if the argument

is close to 1,, but it won't be less than half ~of the number you'll divide

iTt into, -

y'1 may be unnormaf-ized by I bit.

x will be near 1, y, is a little less 'than 1; so yo-. won't. have
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probleis with the division: givinq you zero. Then when you do the add, x/y 1

has a leading, 7 bit and so nothing is lost there.

Heron's rule is applied normally two more times with, the Ust operation

a rounded add. The rounded add will work properly because the exponents are

the same "(the exponents might differ by I if you are verynear 1).

Empirical.ly, the only case in which this rontine gives the wrong answer

is when you have 1'.0...01 as the 'argument.

This routine was computed to -take 52.8,psec; the RUN library version

takes 80.3 psec, We did not look at any other versions,. (The RUN version

was optimized for the 6600,. so i-t may not be so-good on the 6400; it uses a

strange formula.) The RUN version claim is that out-df 200,000 random

numbers one answer was off by 3 ulps and all the rest !er& i ight.

Accuracy and Tests

Now we'll discuss the accuracy of this routine and the tests 'that

were made on it, how the initial approximation was found and briefly some

other possible approaches.

Two accuracy principles:

-(I) If you have an answer that is no' .machine representable and if

your program calculates, to wtthin ulp of that answer, you have the

correctly rounded result.

your answer

- - machine numbers

true answer

(2) If the result of a long calculation is machine representable and

if your program calculates to within 1 ulp, then the answer you get is that



machine -representable number that is the precise result. This second.principle

i's relevant when you discuss complex absolute value, z =/X+y2 ; if z

is precisely representable, can you-guarantee.you'll get that number, say

if x:3, y=4.

Our result is within I iulp so
it must be the same.

actual result here

Question. I'm confused about what you mean by I ulp, especially near

where the exponent changes.

Kahan- Take the number 2. If you add 1 ulp, that takes you to the

next machine number, but if you subtract i ulp, you drop dpwn two 'machine

numbers.

Answer: We are talking about numbers between 2 and 248.

48Kahan: So take 2 . You say your result will be correct to within

1' ulp in 248. So you are talking abeut 248 + 2. But between 248 and

248_ 2 there is another representable number, 248_ 1. So that second

principle is in doubt.

The issue is: If the answer should be an integer do you get that

integer? To prove that it would suffice to show that before you committed

the last rounding error, the result that you rounded was within alpofwthe astroudin erorthereslt tat ou ouned as ithn ~uipof what

you'd like to get. Then the rounding can't bump you to the wrong place. But

that argument needs to be made more precise, especially near the exponent

changes. This problem will not arise in CABS because an integer times

a power of 2 cannot be an answer.

Question: I still don't see within half an ulp of what, the correct

answer or the computed answer?
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Kahan: It would be the answer before rounding, which is veither correct

nor computed .,

We tested the routine on 30,000 random numbers on c,23 nd compared it

to the double precision result correctly rounded to single precision. We

found: no dfference beteen our routine, the RUN vefion, and the correctly

rounded result.

I'll show that our maximum error is .5 + 246 ulp .5 012 i PIp.

-,l+6

x -= approximatioh

2
S +26) + 2+ + .. )

- /R'(l+26+262+."')

-v(l+e) relative error > 26

Using Heron's rule

Xn+l = Xn+ 3n)

6n+ = 62

We found 6o = .16 xlO "3 < 2-12. We got this result by knowing where, on the

6 error graph, the error would be maximal.

Errors 6 o < 2 12

1 < 2-24

Si < ( ) < 2-24 (remember the S subtracted)

a2 < 2-48 or 2-47

63 < 2-96  or 2"94 relative error = 263 8 units in double precisioi

binary point last 3 or 4 bits may be in error after three Heron's rules
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L [ "error could-be- .5+ 2-44 ulp

You never actually write down all of X/xn; youdo a truncated division

so that all the double precision digits including those four in error never

appear. Yet you can clkim that the result you get is as good as if you had

rounded the whole double precision number [19).

Question:, Are you prepared to state for how many arguments your routine

will not give the correctly rounded results?

Answer.' Not yet.

Kahan; Well, there are at most 6.

Where could you round incorrectly? You could if the actual result was,

in the double precision part:

I... error part-would cause a carry, then you would round wrong.

Kahan: If you neglect powers of 4-, there are only two different numbers

that could cause problems,

Answer: That's, if you have ±1 in the last bit of "i. Of those, til

+1 was incorrect, the -I was correct.

Kahan: You should test all numbers I called C, where C B-l mod 8

and smaller than 8, so that's +1 or -7.

Good error bounds are needed to sho that the routine recovers square

roots of perfect 3quares and preserves monotonici-ty.
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1o Show that Square Roots are Recovered

square fits in.48 bits Ix..... x

squar root xxxxO ...... xxx If e > 0, rounding gives t.
1 7' correct result.

...... If t < 0, rounding propagates
T "" - carries and you recover thecorrect ansr.

Monotoni city

Assume A = 247. v= 223 + ... ( ,' .* 223)

(A+1)/2 = A 1 + 1 .1 1 "

2-24

11 xxxI,
01

If you increase an algument by T in the last place, its square root

will increase by very much more than the sum of the errors you'll, have iade

in computing the square root before the last rounding. You look at the two

numbers before the, last rounding, and while tr&Ye is trash in the last 3 or

4 bits of double precision, the numbers wi;l- differ in the right direction

by an amount much bigger than that trash. The rounding operation.will not

destroy the monotonicity.

Reducin the Degrees of Freedom From 4 to I

ax+ b 1
X
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There is a theorem, that says there is a best rational approximation to

a function on a given interval. This approximation should hold if x X"

:'IL K' . I

axxb

Kahan:. ax+b isa best approximation in that its relative error has

been mininized. It-must also hold for 2.. which is in the same range. If

[ ab , it is afunctionof x.
we take the measure of error, .'n cx- n Iti

The maximum value depends on a,bc,d.

Theorem. There exists a uniqLe set {a,b,c,dl, except for a common factor,

which minimizes, the maximum taken by the relative error. If we compute the

relative error, x+- kn LI, it is the same kind of function of x,

ax+b

with a and d swapped, b and c swapped. It can also be minimized by

apt choice of a, b, c, d. Since the choice is unique, the two functions

must really be the same function-

If the function you wish to approximate has a symmetry that is preserved

by the way you measure error and by the interval, then you should be able to

use the symmetry to decrease the number.of independent constants.
ax+b

So we can say that y= bx+a

2 /x

1 -' -, - rational approximation

4 x

i . . .
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rxf1+6 ax+b +-c2
x-a c x+c

We solved for S(x), took V'(x) = 0; had to solve numerically-to give points,

of-maximum error; had maximum error at end points also.

The two interior 's are equal, the two end 's are equal, regardless.

So we set the errors 1 and 2 equal to determine C. It is not possible to

didie with c, or with the S, so that that one wrong square root comes

out correct. It is wrong because you use Heron's rule.

It was suggested that we look at a third order method like XP(x2-A).

The resulting P would require 8 operations to compute the function, whereas

4thHeron's rule takes 3. Two steps of Heron's rule (6 operations) is 4 order
3rd,

whi-le one step of the other method (8 operations-) is 3 -order.

We tried linear initial approximations, minimizing the absolute errpr

(that's what the RUN version does). The linear 'approximation has )Imqlti,(y

and I add; ours has 2 adds and - divi'de, -o it is rmnt inuch. more work, We

looked at Professor Kahan's initial approximation (for *he 7094, bu, thel's

complement exponent would be almost as ,much work to unravel as doing the

other approximation. Also four Heron's rules would be needed.

CABS

Z = CABS(X,Y) ]ZI +Y_

In the RUN compiler, they compute

~~Z Il + (m/) 2"  X Y

They do this to avoid overflow, but introduce a rounding error in doing the

di vision.

We avoid the division by scaling instead.
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X x x2 n

Y y- m V y-2-" n  >i

' Z -26i/x2+v 2

iTe only problem the, is how exact x2  and v2  can be.

x2  to double precision .
v to dOuble precision '

+lost

First add the two lower halves Zogether. Then. add that sum to v2  (smaller

of two numbers",, truncated-because when we add to x, the truncated part

will get lost anywaY. e di.d our own rounded add. Add the sum to--the upper

and lower halves of x2 , thfn, iultiply lower sum by two and idd to the Upper

SUM. ISb now, we have (x +v') to ulp. We call our SQRT routine, and

we,'d ike, to get Ix2+v to 4-ulp, but because-we may skip over a

boundary we geP

(2+v2/2 to, ulp .35,ulp

plus the error from taking the SQRT which is .5 ulp.

So the error in the final answer is

1 2 2 1/ 2 / 1
2 (x +V & + j) ulp -. 854 ulp

This method takes longer than the RUN version which takes 85 psec; ours

takes -100 usec.

In testing on random numbers, we found ours to differ by .8 ulp from
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the correctly roundeddouble precision result, while the 'RUN version differed

If Z is an integer, will we get that? W do get (x~y2) to within

! ulp. You don't run into boundary problems (as in principle (2) earlier)

because all hypotenuses of Heronian triangles have an odd factor bigger

than 1. z2 = x2 +y2; we're only in troubie if z -is a power of 2. Cancel

all powers of 2, so at least one of x , y 2, z2  is odd. if z2 is even,

'we must have x2' and y2 .both odd (,can ; both be even). An odd number

squared is,,con,gruent to 1 mod 8. You add two such nm.bers. The sum, is

congruen-t to 2 mod 8, but z2  is congruent to- 4 mod 8 o1, 0 mod 8.

Z = (X,Y) if X> 0 U = b, V= c

V= (U,V)

a CABS(Z) if X < 0, U = sign(Y)*c, V sign(Y)*b

b ((a,+ IXI)/2)1
/2

-c Y/2b

This -is what RUN does and is about as accurate as you can do on our

machine. If a or b overflows, X or Y was very close to overflowing.

The 'time necessary to do all the checks is not worthwhile. The user should

be scaling if he is that close. The only number that could underflow is c,,

but then you deserve it.

Kahan: You could have avoided overflow by imbedding your CABS routine

in this one anc deferring the scaling up until later. You might have avoided

over/underflow without excessive cost.

(That would even, save on Rd to call CABS; Rd is rather slow.)
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Kahan: On your-SQRT, you said after two Heron's rules your result

was good to about 2 I48Z It seems that with some careful trimming of your

constants and trie~ery, that result before rounding could be good to 250.

Then your final ,error would have been something like .505 ulp. It would:

still preserve monotonicity and recover square roots of perfect squares.

But you could not say there was only one operand whose SQRT was wrong.

Shouldn't you save 8 usec and gain a program as good as any others around?

.t

-I;



I. STUDENTS' REPJTs ON MACHINE ARITHMET-IC

Groups of students investigated various interesting machines in order
to determine how numbers are represented, what kind .of model of arithmetic

could be applied, how overflow and urderflow worked, and which of the rules

[2],were followed. The students' presentations to the class and the dis-

cussions they generated are transcribed below.

Burroughs. 85500 Machine

Information, from the manual did not always agree with that given by
Professor Kahan or by the Burroughs people in Oaklanc. So some workings

had to be guessed at.

If some of the things told-us were right, the manual is visibly wrong.

48-bit word

flag bit exp. sign bit

(IIexpi mantssa J
t

sign bit

-''Is word an operand or not?

Representation is in powers of 8 handled by the machine as shown. The

exponent is two octal digits and the mantissa is 13 octal digits. The oGtal

point is to the right of the mantissa. A normalized mantissa could be like

this:

.... or in binary w)ixxx...
9 47

Exponent is not biased. It is also in sign magnitude, as is the mantissa.

-77 8 < exp < +778
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±0 are presented, but all operations treat any zero as a true zero; only

test for zero is-on the mantissa, regardless of sign or exponent. Integers

are represented as floating point numbers with exponent equal to zIro.

Arithmetic.dperations work on a stack, The two top elements are

registers A and B. Operations are eormed on these two registers and

t-.e result is left in Brregister. Anotlier register X is used to hold

shifted out digits and the extension of the, result of multiplication and

in division. X is npt'pentioned inthe manual' and its contents are hot

available to the -Pogrammer.

You can't Lee X but it affects you, There is also L exponent

register N.

The rounding rule (not from the manual but from the users so it may

not be correct) is that you always round,up by 1 in magnitude

place. You have a 'bias' up.

How Addition and Subtraction are Performed

If one argument is zero, then the other is the answer.

If the operands have the same exponent, they are added (subtracted)

and the answer is rounded up to 13 digits.

Question: To what extent are single precision arithmetic operations

characterized by the rule that Knuth uses -- do the operation Lorrectly,

take leading 13 digits and round the 14th up?

Answer: It is followed for normalized numbers in single precision

Question: Is there any case when this isn't true?

Answer: It is not true i.f the larger operand is not normalized; thisr can lead to an error of 10% acco'ding to the manual.
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You tan generate unnormalized numbers in subtraction ,as the result is

not normalized -after he operation.

'Acc6Lrding to the Manual

if the shifti. , to align octal points is by, 4 digits or more, the

Slarger operand is taken to be the result, say
0 1- "x-80 8

+ 7 ... 7 8""14  result = 1 x8

The brrect result is 1.07i...7x8 0  which rounds to l.O0-..O 0x8o with

more than 10% error.

According to Professor Kahan

If the larger operand is unnormalized, shifted out digits are kept in

the X-register -(you lose only the last 7 in the example above). Addition

is performed in 26-bit adders; the answer is shifted left into the B-register

until X is empty or the B-reyister is normalized, Then the result is,

rounded 'up. Now-y.ou only have difficulty when you are subtracting. If

the 1 (in the example above) is unnormalized, the result may be wrong by

one unit in the last place in the stored register.

Thix- is the extent towhich the B5500 results will vary if you use

unnormalizt ,d operands, assuming that the maraal is wrong-.

Co.i.ts On the Rules in F21

I. If -x is representable then x is.

, - 2. The representation of a number is unique except for unnormalized

numbers and for 0. There is no normalize instruction.

If you generate an unnormalized number, whether it remains unnormalized
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or-not depends on the next opat tr

It Was intended that yoi should 4 z the sa* result from normalized or

unnormalizd operandp. if Frofqsa;> han is right, there is a small discre-

pancy. 'if the manual is rifbt *ov" iS too large to believe.

3. Exact answers are gqive, wehir possible, l

4. Overflow gives correct a ,)swer with exponent correct only to

inodulo 64; overflow joggle is turned on.

Question: That would be okay if the only exponents to cause an overflow

Were 64 to 127. Thn the, fact that overflow had occurred would tell you

the true exponent. But what happens when you square 77.. 7 x 863?

Answer: ((813I) x,863)2 - 826 x8126 = 813 x8139 = 813 x811

So they should save two characteristic overflow bits. You do not still

h e the operands. They were on the stack and they have been, destroyed. You

have irrevocably lost a binary digit. It could have been saved in the

exponent sign bit ,ince you know overflow could- only occur for positive

exponents. You cahnot tell if you overflowed by a little or a lot.

The Burroughs people were not willing to make the change to use the

exponent sign bit for overflow,

5. Rounding is okay except for unnormalized numbers.

6. You drift up in the sequence Xn+l = (xn+y) -y [2].

Double Precision Representation

13 13

Results in double precision are always normalized but truncated.

On multiply there is a problem only when you get 25 and not 26 digits.

They keep only 27 digits as they multiply (they don't form the 52 digit)
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productY. There can be an error-of 1 unit in the 25th digit.

In-subtract, they keep only 26 digits.

Question: If yo, have (A-B)*C. and (A) yields an unnormalized

result, is it normalized before multiplication?

Answer: No, multiplication is performed, theii the 13 most significant
digits: are normalized and rounded if possible.

If you multiply integers together, the answer tries to stay an integer,

i .c. with zero exponent. There are special rules for rounding them.

Question: How do ±0 compare in logical operations?

Answer: They would be different.

Question: Suppose I compare (x-yy with -(y-x)?

Answer: You have to distinguish ,relation operations comparing numbers

and Boolean operations on bit strings. In comparisons, ±0 is always zero.

There are all the tests >, >, etc. There is no: test just for sign except

by a Boolean operation.

IBM 360/40

32 bit word

ca fractionJ single precision
01 78 32

double precision
8 63

It uses true hexadecimal representation:

biased exponent by 6410 = 4016

characteristic 0 < C < 127 so -64 < exp < 63

number is fraction x 16exp

5.4 x l0 "79 < f < 7.2 x l075  Representable numbers expressed in
sign magnitude,
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The rounding rule is: Do operation to infinite precision. Then round

to 6 or 14 hexadecimal digits.
adding .-Whe ng magnitudes, the rule is

Z = TRUNC(X -TRUNC(Y))

6

LI " II

017!F-!1
'F .4

-carry bit 'hex' as a guard digit

The result is left shifted until the answer is normalized. It couId

be off almost one hexadecimal digit in the last place.

If you get an overflow on adding

the result is right shifted by one 'hex' (4 bits)

1 ix ... ,,- l E]-

so you lose 4 digits.

Say the bit lost was F (- 151). Then, the answer is truncated.

We might have

IFFFFFIF

Then the answer is just IFFFFFI6, not 20000016 as might be more reasonable.

If the machine is given unnormalized operands, it flrst niormalizes them.

In multiplication, it produces a 14-hexadecimal-ui.it result (the last

two are always zero) (28 in double precision). Actually in dudble precision,

:F



I-8

it does a curious thing. It gets the 28 digits, truncates to 15, normalizes

by left shifting and truitate.- to 14 digits.

(A long time ago they used to truncate to 14 hex digits first, then left

shift if there was a high order zero. The answer was already truncated.)

You had 1.0*X X because the last hex digit was truncated.

Actually, they never keep more than 15 digits whi'le multiplying. (In

the larger model 360's, they do this chopping -- they generate the whole

product and throw a big chunk away.)

In division, truncation is done properly.

Overflow/underflow: In- exponent overflow, the exponent is -small by 128,

the fraction is correct.

In exponent underflow, the expoient is large -by 128 and the fraction is

correct.

Division by zero is suppressed.

The 360 has a strange thing -- over/underflow can -cause an interrupt,

but it can, run with the interrupt turned off. Then a condition code is set,

except for multiply and divide. You can get around all this by letting

the interrupt work and code to prevent it.

In FORTRAN there is not muchi hope of recovering from overflow. IBM

says use PL/l to find or go around your error.

No information from the exponent is lost on overflow because it can

only overflow by 1 bit. The number range (normalized) is not so asymmetric

as on the B5500.t

t As an exercise, verify that if the B5500 exponent were biased differently,

you'd not lose that extra bit. You do not lose a bit on the 360.
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Rules satisfied:

1. Have x, -x

2. There is a -0, but it acts like the normal zero in compare

operations.

3. Exactness of answers is preserved.

4. One can, say they don't waste information unnecessarily, but

they make -it hard to recover.,

Question: What about this. truncating business?

Answer: In a sense that is not wasted beca'se you had nowhere to put it.

5. The answer won't necessarily be set t, tht nearest representable

number because of truncation, but it is one of two numbers on-

either --side.

The-error is less than 16 5 for single precision. You see this by

looking at

.100000IFFF...F

If you throw away. that (those) F's, the relative error is

16-6 1 in the last place (almost)

6. Sign symmetry is preserved. YoU do get drift because of truncation.

Double precision is just like single precision (they carry a guard digit)

except for 14 instead of 6, hex digits.

IBM 7094

floating point representation

char binary machine

binary point
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Oharaterlstic biased by 128, -128 < exp < 127

27 bits in fraction

Arithmetic is done ih an accumulator

0] Jch I [fraction I Q, P overflow bits

Another register which: soetimes acts like a-right hand extension of

the accumulator is called the MQ.

EI chF r J fraction
01 89 35

Integers use all 35 bits and have their own operations because they

are not set up like floating point numbers with zero eXponent.

Add or Subtract operation -- different exponents. It puts the nun'er

with the smaller exponent into the accumulator. Then it right shifts it

into the MQ.

-* .. memory
±- , ixxxi~ -xxTXWO- AC and MQ

it performs + or -, puts the answer into the accumulator and

normalizes, then doesn't round the answer, although the information is sitting

in the MQ. In normalizing, it brings in bits from the MQ. So you have

54 bits when you add or subtract. There is a round instruction; it examines

the highest bit of the MQ and rounds up if it is a 1. You could use

Professor Kahan's roundin6 scheme here by examining other bits of MQ, but

this isn't done.



Far mul-tiply, you have tha 54 bit result in AC atnd , Q, but .you only

-get the truncatee'(or rounded) result-; as in adding.

In division, Ohe quotient is: in. the MQ and- the remaibder is in the AC.

Correct rounding here would require anQthe, r division to determine the ratio

of remainder t6- divisor. So division is simply truncated.

Question: Pow well does single precision follow the rule that says

get the exact answer and tiuncate to so many significart figures?

Answer: This is followed except in one case because- if a result must

be left ,shlfted, bits are brought in from the MQ. The one exception its

when an add or subtract shift sends the smaller number out of the MQ. Then

the rule is not followed as the larger operand is the result.

This case could lTad to some sequence to not be monotonic that should be.

Double Precision

AC has high order bits, MQ has low order bits -- two words in memory

have the other double precision word.

Add and Subtract

If you have to right shift one operand, shifted bits are simply lost.

So there are no guard digits.

Multiply

Say words are A and B (in AC and MQ) and C and D (in memory).

The leading -digits of the answer come from [A XClhig h order Lower order

digits come from [AxC]low order +[A xD]high + [BXC]high" This can lead

to an error of 6 units in the last place. The machine truncates on taking

[AXD]high + [BXC]high. So it could lose -2 in the last place. It

will lose another 1 (down) in the last place because you ignored [Bx D]high .
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Then if the entire an:We needs to be left Shifted to normalize the result,

these -3 Would become --uiits in the last place. ;An instance of an

error of 5.94 ulps was discovered at .te Jet Propulsion Laboratory.

Double precision divide can lead to -4 units error in 'he last place.

Question: If you subtract two different double precision words, call

you guarantee that the result is non-zero? Except for underflow7.

Answer: Yes, although it's hot easy to find out.

Question: What if one number is 7ero and the other gets shifted way

to the ight?

Answer: It can't happen as the machine would detect the zero and give

the other number as the result.

Question: Is any information lost on over/underflow?

Answer: No, registers are not cleared on over/underflow. Also, you

get an interrupt and are given the following information: whether overflow

or underflow occurred, in which register this happened, AC or :MQ, what

operation was being performed, +,. -, *, /; the address +1 is stored.

You can do arithmetic with P and/or (k nonzero where they act &s

part of the characteristic. But the nanual warns that this may give wrong

results.

You can get drift because of truncation.

BCC Model 1

Double precision adds
=Fichr] mantissa l i 48 bits to the mantissa

f 11 bits 36 bits 48 bits
sign

The exponent is biased by 20008; the mantissa is in 2's complement.

The exponent is not changed for negative numbers. This is true for both
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normalized and Unnormatized numbers.

4 Different Kinds .o' Floating Point Numbers

norial zero: P .. 3i,," o

normalized numbers: _ xx ....

- or both normalized
I. ..... negative number

unnormlized' numbers: +_

(smallest exponent) " (sort of normalized)

- .x. ... .x

Hardware for machines exists, but not all of the microcoding for floating

point and none of it for-double precision or for handling -- exists.

Floating point arithmetic was essentially implemented in microcode from

the manual.

Bias was put in the exponent to allow "Che zero test to be either fixed

point or floating point. This actually is unnecessary because there are

floating point tests.

Any other number of the form

is not a legal floating point number. If you try to use it as a floating

poinr number, you get trapped.

Arithmetic

All arithmetic is done in double precision. The accumulator is 84 bits.
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The result is rounded to 36 WhyAen you- do 'a-. store rpeiratiOn in-singl-e

precision rude.

Add and Subtract are done With a !'ouii bit and a sticky bift.

Question: Aren't there tw! rotmdnrig bits?

Answer: No, therels just one, roundtng bit. You can' gt, around this

(for subtraet, where two bits at the 'rght may 'be ,needed) by shifting left 1

at the begirtng and using the overflhxobit.

Example where double precision arithetic and then rounding don't work properly

(accorJing to the manual):

36 48 R S
x. ...o_ _ o ..... ME

Rdund the double precision word to the ,earest even so R -and S are

just thrown away. When you try to store this word in single precision the

.machine looks only at the 48 bits and rounds to the nearst even in this

case (so 48 bits are just thrown away) and your answer is off in the last

place. This is wrong in the manual. It uses the 48 bits and the R and

S bits to round.

Multiply acts like you expect it to, using the R and S bits.

Divide in single precision (claimed):

37 S
quot ent

set if divide is not exact,
set if there aei more fraction
bits in the accumulator

There is an anomaly in double precision divide. You can divide 84 bits

of accumulator by 84 bits in storage to give an 85 bit quotient. You need

one more bit to be set if the division is not exact.

The manual does not treat unnormalized numbers. It just says that they exist.



, 1-15

You can generate them on underflow and choose to trap on underflow,

.or choose an unnormalized result.

If you trap on over/underflow, the mantissa is correct and the exponent

is off by 211 (overflow) or -211 (underflow).

There are five different runding and double precision modes. You

can select a different .ioide for one operation and then the program reverts

to the standard mode (discussed earlier).

Discussion, ,Comments

1) There should be no discernible difference in the way 'single and

double precision rounding ara done. Thus, division is a mistake in the design.

One bit is left out.

This allows a user to discover if his program is not working because of

a flaw in the program or because of rounding errors In the machine. He

changes his single precision program, to double precision and looks to see

if his errors have moved to the -ight or not.

2) The extra rounding modes give users access to interval arithmetic

by allowing users to specify round to the next larger or round to the next

smaller in value or magnitude as wanted [12],

3) Default rounding is to the nearest number.

But rounding can take as lng as an ordinary add-. So do your rounding

when you use an operand and not when you generate it. Then you can overlap

operations, in the machine and not waste time.

On the 7094 for example, the Round instruction takes 2 cycles, ordinary

Add takes 3, so Add and Round take 5 cycles.

Question: 0n the 7094, is it possible to get the same result in two

different ways (mul-tiplying) because the binary point is to the right of the

first digit? On overflow, that is.
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Answer: No, you can only get one overflow from mantissas because their

product, no matter how big theyare, is less than 4. Say m =  .-. I then

m 2 < 4.

4) Normalized and unnormalized numbers: 11brmalized numbers, al,1 have

reciprocals. But the number d of0-.3:--0 does not (it is the only

one that doesn't), so it is unn6malized. Actually, it is called both.

5) Why is there a -o? isn't dealt with; it is just used to tell

that overflow has occurred.

In interval arithmetic, you think of numbers as being on a circle and

every interval that is representable is an interval on that circle. Its

complement is also representable, so that includes only one point as - [12].

This machine could have been ideal, depending on if the details were

implemented conscientiously.

Question: Why are numbers in complement form instead of in sign

magnitude?

Answer: Because they said it was easiest to run the registers that way

and besides it doesn't matter.

Question: Doesn't the double rounding cause problems?

Answer: It could, if you did (A+B)*C without storing and if you

stored (A+B), then fetched and multiplied by C. They get around this by

always having A+B stored temporarily (by compiler) with store and fetch

operations overlapped by others, so no time is lost in doing this.

When a number is rounded, right hand bits are cleared. But a double

precision word ought not to be rounded until it is stored, so somebody missed

the point.

Question: Is it economical to have double precision hardware, or is

it a luxury?
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Answer: Once it was decided that doubIe precision was, a goad thing,

you only pay a small penalty by doing all operatio,,.s to double precision,,

namely a small time penalty for carries to propagate.

Question: But why do most machines not have built-ir double precision?

Why was it done in the BCC?

Answer: Usually, you can program double precision almost as well' as

it can be handled by hardware. But in machines of small characteristics,

you run into serious problems with underflow and overflow. The -characteristic

of the second word is down from the first, so there is a nasty tendency to

underflow and the system may be cleared to zero. But you might say the

problems gct worse with higher precisioz.,

That"s true, but most people.are content with double precision. Those

who want more are williig to sacrifice effi.ency.

CDC 6400

floating point number range: 3 x10- 293 < f < 2 x,10321,

rather large compared to other machines

numbers represented as: sign x 2 exp x coefficient

coeff.ici-kht is considerod as an integer

-1022 < exp < 1022

O < coef < 248 1 unnormalized

247 < coef < 2 48- normalized

1 10 48

exp is 11-bit l's complement number
then complement the first bit to bias the exp

If the nimber is to be negative, the whole word is I's complementee.
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The word-is packed so complicatedly in order that you could take the

floating point reprasentations and compare tht using fixed point compare,

as long as the numbers are normalized and ,none are indefinite. But you can't

do 'this 'y ising fixed point subtract (it's not really faster anyway).

Floating -i1 nt operati-on§

Add

Subtract truncate, rdund, double precision

SMu ltiply

Divi de truncate,, round

Normalize normali2e and round

We will principally discuss single-precision, normalized numbers. Since

I 's completment numbers are isoniorphic to sign magnitude numbers, we will

only talk -about magnitudes.

Question! What does a normal zero look like?

Answeri It depends on who wants to know and we'll. go into that in some

detail later. The best answer is that anything that is fed to the normalizer

that it think's is zero is cleared to all zeros.

The RUN version of FORTRAN makes sure everything is normalized. It

must normalize after add and subtract.

Addition

11R. The smaller number is put into a 96 bit
O...olxx'.xO0J register and right-shifted. Bits fall off

---__ the right end.

overflow bit

In tunccted add, right bits are dropped. If the sum overflows, one
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right shift is dore.-

Actually the leading 48 bits in the register are taken as the result,

net the leading 48 significant bits.

Subtraction

Same. sort of thing. Exact subtraction of magnitudes, truncated to

leading 48 bits of the register. The answer may be very small.

[_... ___._XXX _ exponents differ by 1

This may be the only significant
bit and it would be thrown away.

error in A (B = A(l+e l) + B(l.+e2) je!4 <2 -47

error in A 9 B = A(l+e l) + B(l+q 2) feiJ. < 2-47

Question: Why is that register 96 bits?

Answer: It is used in multiplication and doub,!e precision operations.

You can get at the right hand part.

Question: Why must you have e1, maybe different from 62? Is it

.because you can get a zero 0nswer undeservedly?

Answer: No, for example, on the 650 where right shifted digits are

lost immediately (and you don't get zero undeservedly), the same error

analysis would have to be used. Non-zero answers can still have a-high

relative error.

On the 650 (to two digits), lO0- 9- 10. The e i's. could be made
I

equal, but they'd be huge and you wouldn't want to use them.

Here you violate the rule that says if the answer could be represented

exactly in the machine, it should be.
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Rounding Add "

Add a 1 bit at the end of each normalized operand (try to normalize

the operands), unless you have a 0. (Zero is not normalized as far as

this operation is concerned.)

case of equal exponents

.1... -O This would add y in the last place.

case of unequal exponents

1
This could still overflow. Then adding only in the last place makes an

error of T in the last place.

A @ B A(l+e l) + B(1+62)

ho overflow 3 16i I < 248

overflow lei <3 X2 4 7

This doesn't lead to 3o pronounced a drift as in truncation.

Multiplication

It forms an exact 96-bit product (may have only 95 significant bits).

If it has a leading zero, the result is normalized while still in the

96-bit register, then truncated to the 48 high-order bits.

A ® B = Ax B(l+e) , e < 2- 4 7



Rounded multiply

[When the mach-Inewas first built they would add a 1 to the end of one

operand before multiplying, so that you could have Ax B I BxA.

.Now they add a in- the 50th bit instead of 4 9th, thee ieft shift 1

if -necessary.

So they round by Or depending on if there is no or 1 lef't shift.

Actually this adding is done at te beginnilng- of the multiply operation

(done by add, shift, add, shift, etc.). Instead of adding to. zero in the

first cycle, they add to
L

A @ B A xB(l+e) eI <2.x2 47

Not much better than truncated multiply.

Di vision

It truncates the exact answer to 48 bits.

A OB = A/B(l+e) , lel < 2 47

Rounded Dvisicn

This appends to the numerator the series 010101... so they compute

1 -4N + 3-( -248)
and take the most significant 48 bits.

AQ) B = A/B(I+e) , 2 <_ x2 4 7

This assumes that the operands are uniformly distributed between 2+47

and 2+48 -I and that the part thrown away is also uniformly distributed.

Then you get that the mean error, after rounding, is zero (by hocus-pocus).
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Question: Are the operands uniformly distributed?

Answer: I have no idea, but there may be a tendency for smaller ndipbers

to appear.

Who- Wants tc- Know if It Is Zero?

-I E C E -- C E C01 1 0 1 0
.- compare N N N Y

+ ~ .4, N Y
4J I

N Y Y Y
o 'Is It Zero?

E = exponent

E = 0 means smallest possible exponent

C = coefficient

,Column 3 disappears when normalized numbers are demanded.. If the

ceof-fi,cient is zero, the whole thing is set to zero by the normalize

i n'f tructi on.

In colurm 2, it wi-ll be set to zero unless it is already normalized.

That is, if the normalize box has to shift left, it can't because-the

exponent is already as small as it could possibly be, so all zeros are

entered.

The add box would be happy to add in a number of the 2nd column type.

There is a strange number on tte .CDC that is treated differently by

different units.

It is normalized since the leading bit is a 1.

As far as the add unit is concerned, this number is legal, But the
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multiplier looks at the zero exponent, and says the number is zero. Thqs

you can get

.: A*I. =0 when A 0 .

If you divide by this number, you get an indefinite answer.

An example of two different numbers whqse difference is 0:

Y: exponents differ by I

When this answer is truncated, you lose 100% of the answer. So if you test

for ) = Y, the result is TRUE, according to the machine.

Why is this so bad, since the numbers differ by only 1 in the last

place? Because you are losing all of your answer. This could cause a

problem in the following way:
Say X = 1.0, Y = 1.0-2 -5 are FORTRAN variables. You test for

X = Y and get TRUE, implying that X = Y. If you had tested for

tX- .5) = (Y -.5), you would get 'FALSE, implying X 0 Y.

Overflow ahd Underflow Peculiarities

If you overflow, there is no trap, but a certiin-bit pattern is produced,

P, called -. When you try to use this number, you are trapped.

There is a test for this number, bat you would have to do it after every

multiply and divide.

On an overflow, the coefficient would be correct, bt there's no way

to get at it. And the exponent is put to 3777 (it is not correct modulo

anything).

-
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On underflow, the result is cleared to zero and there is no message.

Thus, things like the following can happen:

Ax +B8A /

A, B, C, D, x > 0 and normalized.

In one casei the numerator and denoinator underfl0, in the other

nothing happens. The point is that on the CDC you, have no way-of knowing

if there was underflow.



II. THE RUNW.2 COPILER FOR CODC FORTRANt

Introduction

This paper is a description of another revised FORTRAN IV compiler

derived from the CDC RUN copiler. The modifications were performed by

the author on the RUNW.1 compiler, which is in turn a modification of the

University of Washington RUN compiler, November 1970 version. Basically,

:RUNW. is a modification of the CDC RUN compiler which produces somewhat,

mofe efficient code, largely through improved use of temporary space.

The purpose of the new revisions was to "fix up" real single precision

arithmetic. This has been done by modifying some in-line functions and one

library function,, changing the order of evaluation of relational expressions

(such as X .GT. Y+',) and, as a user option at the subroutine level, to

provide properly rounded single precision -real arithmetic instead of the

somewhat undesiraile arithmetic. currently compi led.

This paper is a description of the new revisions. It is divided into

four sections: Section I is a theoretical discussion of rounded arithmetic

on CDC, 6000 machines and numerical analysis, and is meant to describe and

explainm the defects in the CDC RUN code and provide solutions. The improve-

ments made in the compiled code are discussed.

Sectio' II is a description of the options available to RUNW.2 users,

and is oriented toward the somewhat sophisticated user. Some examples. of

COMPASS code! are given, but they are mostly foa' completeness; it is not

essential that the reader understand COMPASS in ov'der to use Section II.

Section III is devoted to compiler internals and is not reprinted here.

Sectfon IV gives sonce wishes for the future.
tBy David S. Lirndsay.
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Most of the new floating point algorithms generated by RUNW.2 were

suggested by Professor W. Kahan, who supervised the compiler modifications.

We state -at the outset that our purpose' is to implement con-it-l-y rounded

arithmetic. Over/underflow problems still exist and there is just no

sensible economicaly feasible solution on these machines.

Section I: Rounded Arithmetic on CDC 6000 Machines

In order to understand the options available on a 6000 series machine,

it is necessary to be familiar with the floating point hardware, as described

in the machine reference manual, CDC publication #60100000.

We first consider addition and subtraction, which may make .use of the

F,, R, or D type add and subtract and the N and Z (normalize, and round and

normalize) instructions. However, the Z instruction does not appear to be

useful in this context.

We will adopt the convention, used by the RUN compiler, that operands

are assumed to be normalized and, if they are, then results are guaranteed

to be normalized also.

The "obvious" way to perform an add of Xl and X2 into X6 is:

FX6 XI+X2 FLOATING ADD

However, normalization in the 98 bit accumulator does not occur. Its

upper 48,bits are simply packcd with the appropriate exponent into X6. Thus,

as the reference manual points out, the result may not be normalized. Hence,

if we are to adhere to our convention of guaranteeing normalized results, a

normalize is required. As we shall see, the lack of an "automatic" normalize

causes most of the problems associated with addition and subtraction.
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We thus arrive at the followinq,-code:

FX6 Xl+X2 FLOATING ADD

NX6 X6 NORMALIZE

Similarly, a complete floating subtract would Took like:

FX6 XI-X2 FLOATING SUBTRACT

NX6 X6 NORMALIZE THE RESULT

In fact, the RUN compiler compiles all of its single precision real

adds and subtracts in rnis.Way (although, of course, not necessarily with

the registers we used).

This arithmetic has an ugly feature. It is possible for two normalized

real numbers Y and Z to be such that Y-Z computed in this way yields

zero, but (Y-1.) -(Z-1.Y does not!

For example, let

Y = 1721 4000 0000 0000 0000 B value=exactly 2.0

Z = 1720 7777 7777 7777 7777 B value - 2. O -2"47  exactly

Now Y-Z, following the recipe in the reference manual, would.be

computed as follows:

Put the number with the smaller exponent (Z) into the 98 bit accumulator,

and right shift it by the difference between the exponents (1). Then perform

the indicated operation (-), yieid.ing:

upper lower
- 3777 7777 7777 7777 / 4000 0000 0000 0000 -Z

+ 4000 0000 0000 0000 /0000 0000 0000 0000 Y 1.1)

0000 0000 0000 0000 / 4000 0000 0000 0000 result

where the / marks the division between the upper and lower 48 bits of the

accumulator.



I"
11-4

Thus after the F subtract, the result register will contain:

1720 0000 0000 0000 0000

which, when normalized, is of course zero.

But now consider Y-i.:

1. = 1720 4000,0000 0000 0000

Thus Y-1. = 1720 4000 0000 0000 0000 = 1.0

and Z-1. = 1717 7777 7777 777,7 7776

Now compute the difference between these two numbers. The accumulator

wi l" then contain

- 3777 7777 7777 7777 / 0000 0000 0000 0000 -(Z-1.)

+ 4000 0000 0000 0000 /0000 0000 0000 0000, Y-l. (11.2)

0000 0000 0000 oo6i / 0000 0000 0000 0000 result,

which is not zero!

We therefore also note that the results obtained from this kind of

arithmetic depend not only on the exact answer, but also on the operands.

We would like to present code which does not have these defects. The

availability of the lower 48 bits (by use of the D instruction) is the way

out.

Consider the following code:

1 DXO Xl+X2 LOWER 48 BITS WITH THEIR EXPONENT

2 FX6 Xl+X2 UPPER 48 BITS WITH EXPONENT 48 LARGER

3 FX7 X6+XO ADD (1) AND (2)

Let us consider step 3.

The coefficient of the smaller exponent (XO) is entered into the

• I.
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acctinlatbr and right shifted by the difference between" the exponents (46).

This puts it entirely in the lower half of the accumulator, which is of

course where it came from to begin 'with in step 1.

[ The coefficient *f- the larger exponent is then added. It is of course

of the same sign as-the coefficient just enared, but lies wholly in the

upper 48 bits. Thus the effect is exactly that of concatenating the two

coefficients viewed as bit strings. This is all obvious enough. But some-

thing interesting occurs if we insert a normalize between 2 and 3, thus:

I DXO Xl+X2 LOWER SUM

2 FX6 Xl+X2 UPPER SUM (11.3)
2.5 NX6- X6 NORMALIZE UPPER SUM

3 FX7 X6+XO ?

If n 'left shifts were performed in step 2.5, then the exponent of X6

would be decreased by n -(assuming the coefficient . 0). Thus in step 3,

the coeffickent of XO would be right shifted- 48- n places before placing

it in the accumulator. Its leftmost n bits now lie in the upper part;

X6's lower n bits were cleared by the normalization, so again the effect.

is just that of concatenating the bit strings, but the result is now normalized.

The only exception to that statement -arises if X6 were originally

zero. Then the result of step 3 is exactly the lower part of the original

sum, and so it still must be normalized to guarantee a normalized result.

-(But in fact, it is easy to see that normalization is only really necessary

when the answer is zero.)

We now have a method for getting more accurate chopped arithmetic. The

only case in which the result obtained is not the chopped representation of

the exact result is when

S
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1) The add or subtract results in the algebraic sum of too non-zero numbers

of opposite sign, and

2) One is so small in magnitude with respect to the other that it is, entirely

right shifted out of the accumulator when it is loaded.

The computed result equals the operand with the larger magnitude, but

the exact chopped result is smaller (in magnitude) by 1 bit in the last

place'. (However, 'his is a lot better than we were doing before..)

Replacing the floating add in step 3 by a vOunded- add' wll result in

properly rounded arithmetic. The complete algorithm is:

1 DXO Xl±X2 DOUBLE ADD/SUBTRACT

2 FX7 'Xl±X2 FLOATING ADD/SUBTRACT

3 NX7 X7 NORMALIZE UPPER PART (11.4)

4. RX7 XO+X7 GET ROUNDED RESULT

5 NX6 X7 AND NORMALIZE

To, see why the rounded add works right, note that the operands in

step 4 will be of the same sign, so a round bit-will be attached to the

right of the larger (and to the right of the smaller if and only if i~t is

normalized). The presence or absence of the round bit on the smaller operand

is irrelevant, as a consideration of the cases shows:

Case I. The exponents are the same.

How could this happen? The exponent of the upper part is 48 greater than

the exponent of the lower part before normalization (step 3); after normali-

zation, the exponent is decreased by at most 47, unless the coefficient is

zero, in which case its exponent becomes -1777B, corresponding to a charac-

teristic of 0000. However, fortunately, the hardware treats this as a

special case. it will not append a round bit to a zero operand.

Thus~the result of the addition will be exactly XO, as desired.
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Case II. The exponent of XO -is greater than that of X7.

The analysis in Case I shows that this 'can only-happen when X7 is
J

zero. But then we get the :right answer, namely X0.

Case IlL. The exponent of X7 is greater than that of XO.

A round bit is then attached to the right of X7 before addition. If

XG is not normalized, no iround bit is attached to it; if it is normalized,

a round bit is attached. But since XO is right shifted at least by 1,

its round bit cannot generate a carry. Figure 11.5 makes this clear. It

assumes positive operands; the case, Of negative operands is similar. Note

of course that both XO and X7 have the same-sign.

Figure I1.5

Oxxx ... xx / ... x100 ... 00, XO right shifted at 'east 1

lyyy ... yy / 10000000 00 X7 normalizedSxoo 00

cannot generate a carry

round bit

Wenow know that the presence or absence of the ,round bit to XO :has

no effect. If X7 / 0, then it will have a round bit attached. Will this

always, give the correct rounded result?

Since X7's coefficient will always have a round bit appended, 'if no

overflow out of the accumulator takes place, the round will be in the

last place. This is eActly what we want. But what if overflow does occur?

There will then be a right shift by 1 to compensate for it, so the round is

only by But in fact, the right answer still obtains, as follows:

We noted previously that Instruction 3 of ).3 effectively just repro-

duced the accumulator as it was at the conclusion of the adds (or subtracts)



in 1-and- 2, except theit it is now normalized. Thus the only tim! an overflow
can take place in 4 of 'I14 is when it is caused by the round bit. But that

can occur' only when the 49 leading bits are all 1 The result is then to

clear all; of them to zero and set the overflow condition, which- wi-ll increase

the exponent by I and produce :a coefficient of 4000 0000 0000 0000 B.

But that is the correctly rounded result.

We conclude then, that the R add (instruction 4 of II.4) will always

produce the correctly rounded sum of its operands. Will that always be the

exact answer to the Original add (of Xl and X2) rounded to 48 bits?

Surely i.t will be if the exact answer lies wholly within the 98 bit accumulator.

But even -if it does not, the result will still be correct, as the following

argument shows:

Suppose that the exact sum Xl+X2 does not lie wholly within 96 bits.

This can only happen if the magnitudes of the operands are so different that

there is at least T bit separating them when they are placed in the accumu-

lator. Suppose first that they are separated by at least 2 bits:

lxx ... xx / 00000 ... 00 larger operand

000 ,- 00 / OOlyy ... yy Y smaller operand partially (or wholly)
1 shifted off
at least
2 zeros

If the operands are of the same sign, the round bit in step 4 of II.4

has no effect, and the result is exactly equal to the larger operand, which

is the correctly rounded result; when the signs are differant, we have in

absolute value:

zzz .. zz / llww ... ww result of the, subtract
t

at least 2 ones



11-9

Even if The result is not normalized,, a left shift of 1 must normalize it.

Thus the round bit will generate a carry, and rounjing will1 :be by 1. This

restores the larger of (Xl,X2) as the final result, which is of course

the correctly rounded: result, except when the coefficients are separ-ted

by l bit:

Example

Suppose the accumulator looks like:

Ixx ... xx 0000 ... 00
- 000 0..0 Oly ... yyly

zzz .-.. zz/ IW .

If the accumlatdr overflows, the larger coefficient must have 47 trailing

zeros. To make the roundirg come out wrong, we must have the one lost bit

alter the upper part of the DP accumulator. The following example gives a

wrong answer:

100 .. 00 / 0000 . . 00 /

- 000 ... 00 / 0100 .. 1/ 1

011 ... 11 / 116 0 .. 00 computed result

Ol ... 11,/ 1011 ... 11 / 1 exact result

Now normalize and round the computed result:

11 ... 10 / 00 ... 0
000 ... 0 / 10 ... 0

1 round bit
!00 .. 00 / 00 ... 0 computed result

But if we normalize and round the exact answer:

r"
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11 .-. 10 / 00 ... 0
00 ... 01/01 ... 1

1 round bit

.11 ... I exactbit, rounded

Thus the computed answer is not correct.

We have thus concluded that the scheme in II.4 wil1 almost always yield

the exact answer rounded to 48 bits, provided that at each step the operands

and results were in range of the floating point hardware.

This means that our 'scheme now guarantees that the result is dependent

-only on the exact answer and not on the operands almost always. This alborst

satisfies one of the conditions set forth in Knuth, Vl. I.

We further note that it is no longer possible to have Y and Z such-

that Y-Z is computed to be zero, but (Y-X) -(Z-X) for any X, is not,

barring: underflow problems. For if Y-Z is computed as zero, then either

Y = Z exactly or Y-Z underflows. This is true because we compute the

most significant 48 bits of the exact difference. If these ate zero, then

the difference is zero. But since Y = Z, we conclude Y-X = Z-X for

all X (once again, barring underflow).

Note that if the exact result of an additfon or subtraction is half way

between two adjacent floating point numbers, the rounding is always up in

magnitude. In some special cases, this can cause problems. For example, if

we compute X+Y-Y+Y-Y+-. with X - 1.0 and Y = 2.**-48, then each

time Y is added, it will add I bit, while each time it is subtracted, it

will have no effect. The computed result will then drift upward, while the

exact result merely oscillates about 1.0. To avoid such problems, we would

actually like the rounding to always be to the nearest even (or odd) number,

when the exact result is half way between. The following code Hill accomplish
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this, 'but it was not felt to ,be worth putting Into the compiler.

DXO XT±X2 LOWER SUN/DIFFERENCE

FX7 X1±X2 UPPER SUN/DIFFERENCE

NX5 X7 NORMALIZE UPPER PART

RX7 XO+X5 ROUNDED RESULT

NX6 X7 NEEDED ONLY FOR 0 RESULT

MX4 1
DX3 XO+X5 LOOK AT LOWER PART OF ANSWER
LX4 48 GET 000-4000 0000 0000 0000 (11.6)

'UX3 X3 FILL EXP ,FIELD WITH SIGN BITS
BX4 X3-X4 SEE IF SPECIAL CONDITION HOLDS

NZ X4,DONE SENSE NOT HALFWAY BETWEEN

LX7 59 LQWER BIT OF RESULT TO SIGN BIT

AX7 58 GET 0 IFF RESULT IS EVEN
ZR X7,DONE SENSE EVEN

FX6 'J+X5 DONT ROUND -- THUS GET EVERESULT
DONE BSS 0 DONT NEED TO NORMALIZE PREVIOUS STEP -- .IT CANT BE O

This could be made into a ,subroutine by anyone who wishes to do that

kind of rounding.

Let us now consider the multiply operations available. There are three

multiply instructions: types F (floating)', D (double), and R (rounded).

Assuming normalized operands, the F and R instructlon will yield normalized

results. This.is done by performing an integer multiply of the two 48-bit

operands In a 96 bit accumulator, and left shifting the result by 1 If and

only if that will normalize the result. In the rounded instruction, the round

bit is added before the final left shift, so that the rounding is either by

or . The rounded result is thus not correctly rounded.

Assuoe for the moment that we are using floating point numbers Which

have 5 rather than 48 bits of coefficient. Here is an example of two pairs

of operands which yield the same exact product, but different products using
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the rounded multiply.

The first pair of operands have coefficients of 18 and 20. Note that they

are both normalized; as 5 bit binary numbers, t'ey are:

18 = 10010

20 z 10100

18 * 20 = 360, so the double length accumulator would contain:

01011 / 01000 = 360 unnormalized

00000 01000 add round bit

01011-/ 10000 - result, unnormalized, after rounding

The hardware then left shifts by 1 before packing, thus yielding:

10111 with a suitable exponent

There is a pair of normalized 5 bit nuMbers which multiply to yield

720 (twice 360). Thus if their exponents are chosen properly (.their sum

should be I less than the sum of the exponents chosen in the above example),

then the exact product in each example will be the sage. But look what

happens in the rounding:

The numbers are 24 and 30; 24 * 30 = 720.

24 : 11000

30 11110

10110 / 10000 double length product

00000_ 11000 round bit to be added

10110 / 11000 result

Thus the upper part 10110.

So although the two products are equal (with suitable exponents), their
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rounded products are not.

Here is a 48 bit example, which iv messier to ,verify. The reader may

sho 'that:

if A -? (2 46. 1)

B= 5 2 245

X 2 (2 +1)

Y 5 23 * (2 1

then X*Y =A* 8

but Rx(AQ) < Rx(X*Y,)

The F multiply does not have ,this problem. It is properly chopped.

Furthermore, since 96 bits are enough tohold the exact product of two 48

bit numbers, we can employ the rounded add to provide a properly rounded

multiply:

DXO XI*X2, DOUBLE MULTIPLY

FX6 Xl*X2 FLOATING MULTIPLY (II.7)

RX6 X04X6 FINAL ROUNDED ADD

The result obtained will, as in 'the case of addition and subtraction,

be the properly rounded 48 bit representation of the exact answer. The

computed result will thus not depend on the operands, but only on the exact

result.

Note that no final normalize is needed, since the F multiply always

provides a normalized result, even when the result is zero.

The case of division is much more difficult to do correctly. There are

two divide instructions available, F (floating) and R (rounded). The floating
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divide gives the, exact chopped result, but as always, the roureded operation

is not correct. In the R divi4e. 2- is effectively added to the last bit3
of the dividend. The divisor is effectively a numk.er between and 1,

so the round will be by a number between I and in the last place.

The rounding is thus dependent on the divisor, and the ccPuted answer is

therefore not dependent only on the exact answer. Unfortunately, to compute

the properly rounded quotient is a very long process. 'But the hardware R

divide 'is such that, statistically, the rounding is very close to correct.

For those reasons, the, compiler was modified to produce R divides in rounded

mode father than the tedious double precision divide. 'However, we will pre-

sent here an algorithm which may 6e coded as a subroutine and called by

those who actually wish the correct answer.

The method consists of performing the floating divide, then multiplying

back (in double precision) and sulbtracting (with care), itten dividing again

to obtain the double precise answer, and finally using it to round the

original result. The reader will probably agree that this is not normally

worth doing; it reduces the maximum error by 1 bit, but the average error6
is almnst unaffected.

FX6 XI/X2 FLOATING DIVIDE

DXO X6*X2 START MULTIPLYING BAtiK

FX7 X6*X2 COMPLETE THE MULTIPLY

FX3 XI-X7 BEGIN SUBTRACTING (II1,8)

DX4 Xl-X7 IN DOUBLE PRECISION

NX3 X3

FX3 X3+X4 OBTAIN EXACT DIFFERENCE OF (DIVIDEND - F MULTIPLY)

FX7 X3-XO NOW SUBTRACT THE D MULTIPLY

The fol-lowing double subtract (the starred lines.) may or may not be

necessary. As yet, we have not been able to prove or disprove that it is:
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DXO X3-XO * OUBLE PART -OF SUBTRACT

NX7 X7 NORMALIZE

FX7 XO+X7 * ADD IN DOUBLE PART

NX7 X7 * NORMALIZE IN CASE RESULT IS ZERO

We now have the remainder. Note of course that itwill fit exactly in

48 bits. We ray now divide again, and then use this result (which is the

double precision part of the divide); to round the single precision result:

FX7 X7/X2 OBTAIN DOUBLE PART OF QUOTIENT

RX6 X6+X7 CORRECTLY ROUNDED QUOTIFNT

Let us now consider exponentiation (of a real by an integer).

When the compiler sees R**K, where R is a real expression and K is

an integer constant between -11 and T inclusive, in-line code is compiled

to evaluate the result. The only exception is the case of K = -0, for

which a function call (to RBAIEX) is made for some mysterious reason.

The in-line code squares the base, then squares that square, then squares

that result, etc. At each step, a product is compiled into the answer register

(usually X6) if necessary. For example, R**5 would be compiled as:

FX7 Xl*Xl (ASSUMING R iS IN Xl)

FX7 X7*X7 OBTAIN R**4

FX6 Xl*X7 OBTAIN R**5

If the exponent is negative, the inverse is done lost.

The system subroutine RBAIEX, which evaluates such cases when ir.-ine

code is not compiled for them, seemed hopelessly iiiadequate, and was scrapped

for rounded mode. It performs its multiplications with R instructions and

does the division (In R mode) first. This of course removes the possibility

of "spurious over/underflow" which could arise if the divide is not done
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until last. But it also ans that the two results X andY below may

not be equal:

K 3

X R**K

Y R**3

For those reasons, when the compiler is in roundedwmode (and so the

in-line code uses our 3-instruction rounded multiplies of II.6) a different

subroutine is called: RBAIEXR (for Real Pne Integer EXponent Rounded).

RBAIFEXR performs its divides last, and has tests for under/overflows

so that it will guarantee to return, an answer without a mode error, and
wi11 correct for spurious underflows with negative exponents. (Such under-
flows arise because the .nallest floating number is about 296 times larger

than the inverse of the largest floating number.) For example, if the

correct answer is ' the in-line code first tries to get 10 30 0

which underflows to zero. Inverting yields -. It also guarantees to return

infinity and zero of the correct sign, should they be generated. Furthermore,

if the real argument is indefinite, it returns exactly this argument to

aid in error tracing. However, if the exponent is ±0, +1.0 is always

returned (to agree with in-line code). The old RBAIEX has none of these

features.

The in-line code has no traps for infinity or zero, however, so the

following could happen:

1) The Fortran program could get a mode 2 or 4 error while performing an

exponentiation. If the exponent is negative, this could happen when

the correct answer underflows seriously.

2) If the exponent is negative, the Fortran program will produce infinity

if the correct answer is within a factor of 296 of machine infinity



(between 10294 and 10322, approximately.)
Thus if the user is operatihg in these ranges, it might be well to force

calls to RBAIEXR by writing exponentlation as a real to an integer variable.

No changes were made in choped mode code generation. It still calls

RBAIEX.

-A ,few miscellaneous in-line functions were changed. AINT, the Fortran

in-line function to take the floating greatest integer in a floating number,

produces the following code under the old RUN:

UX6 B7,Xl UNPACK OPERAND

LX6 BT,X6 FORM AN INTEGER (II9)
PX6 X6 START TO' FLOAT IT

NX6 X6 NORMALIZE

This code has the disastrous defect that if the argument is greater than

the largest 48 bit integer (about 1014), it produces garbage. The following

trick eliminates this bug:

MXO 1

LXO 59 GENERATE: UNNORMALIZED ZERO

FX6 XO+Xl ADD IT TO THE ARGUMENT (II.10)

NX6 X6 NORMALIZE THE RESULT

If the argument is small (less than 248), then it will be right

shifted during the add just enough to pT1ce its binary point to the right

of bit 0. This is because the zero ivi XO has an exponent of zero. Ifp

however, the argument is larger thao that in absolute value, it will be the

zero which is right shifted -- the result will then be exactly equal to the

argument. But that seems to be what oie would want: The 48 bit representa-

tion of a number > 248 is the same as tW 48 bit representation of its

integer part.



AMOD was also changed copletely. AMOO(X,Y) used to generate code

equivalent to:

X - Y*AINT(X/Y)

This is not always (or even often) the remainder when X is divided

by Y. That is to say, the expression quoted above is of course AMOD --

but the code compiled for it falls far short of accuracy. We completely

rewrote the io-line code to use the new AINT algorithm, followed .by the

,remainder computation (as in 11.6). The result, now generated is exact.
Therefore, AMOD can now be used to progran multiple-precision divides.

Furthermore, if X/Y > 248, in which case the old /MOD produced complete.

garbage, the new AMOD can be iterated as many times as necessary to yield

the exact answer.

The floating point comparisons have also been changed. RUN and EUNW

compile relational expressions from left to right as one long (almost) equiva-

lent expression. For example

X+Y .LT. Z-P

is compiled as,

X+Y- z+-P,

l'eft-to-right, and then tests are performed on the sign of the result. That

gives rise to the possibility of having, for example

LOGICAL Ll, L2

X = A+B+C

Ll = D .LT. X
L2 = .LT. A+B+C



with LI # L2. This problem is Independent of the rounding problem; it arises

fromth.e fact that floating point addition is notassociative.

For example, let A be large, B = -A, and C and D at east 249

times smaller than A. Then A+ C = A in- single: precision.

A+B+C will 'be compiled left to right; B will exactly cancel A

leaving zero, and C will be added, leaving C. Thus X = C.

Then Ll- = D .LT. C, or TRUE. if and only if D- C < 0.

But in the compilation of L2, D-A-B-C will-be evaluated. Thus

D-A will yield. -A, then subtracting B will-yield 0, and finally

subtracting C will- yield -C. Thus L2 will bear no relation atal-i to, Ll!

to remedy this, it is merely necessary to force compilation of the left

and right sides of a relational symbol separately (using either chopped or

rounded arithmetic depending on the compiler's mode) and then subtract them

using the appropriate mode of subtract. This is surely what tWe user wants

when he writes down a- elation.

This, change was implemented in RUNW.2.

Section II: Use of the CZ.pilerls Features

- - The,-main new feature is the Choice of chopped or rounded mode. This

mode is set by a compiler directive between subprograms, and persists until

changed by another directive. There are two directives for this purpose:

'CHOP' and 'ROUND'. They are only recognized when the compiler is looking

for a subprogram, declaration card.

The directives 'ROUND.' and 'CHOP' obey the rules for a standard Fortran

statement: they, must begin in column 7 or later, etc.

The default mode of the RUNW.2 compiler is chopped.

In chopped mode, the modified in-li, e functions are still available
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(discussed below) and the comparisons are still compiled as described at the

end of the previout section. However, the stanward real aritihetic usibq: only

F inst*,uctions is compiled. Thfs mode is desioed for compatibility With

programs compiled under RUN or RUtN (itwill: give the same wrong answers)

or to provide faster and smaller programp for those who do not need (or do

not think that they need) good rounded arithmetic.

Under rounded mode, additionS', subtractions, multiplications, and divi-

sions aft compiled in rounded form, as described in the previous section.

Also, a different subroutine- for evaluation of (real)**,(integer expression)

is called.

To make the use of floating constants compatible with rounded mode,

the compiler will evaluate combinations of floating constants using the

rounded code previously described, in rounded mode only. In chopped mode,

it uses the same code -that would be compiled in that mode. This is what

RUN originally did, but RUNW messed things up by inserting R type multiplies

and divides (but notadds or subtracts!). Thus under RUNW, it might be

possible to have Y and X come out differently in something like:

Y x 100.*.77

L = 100

X x L*.77

This cannot nappen in either mode under RUNW.2.

Apart frnm the Introduction of rounded mode, there are some ,.odificattons

and additions to in-line functions. The most obvious need is for a function

to return the rounded single precision value of a double precision argument.

Such a function, called RND, is available in either modes and results in

the rounded addition:
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RX6 X.U+X.L RND FUNCTION

(where Y..U and X.L hold the upper and lewer 'parts of a double precision

argument).

SNG., yielding the unrounded upper part of a double precision argument

has been impTeiented in-line (before it was a system function, which seemed

silly). It cgoiles perhaps a Boolean. to move the operand to a different X

reglster. However if the operand is an expression, the final DX7 XO+Xl

which RUN is fond: of compiling in double-precision is suppressed'. In this

case, the in-line function actually removes some code!

AIN has been changed to produce god answers for all' operands not

indefinite o infinite. Before it produced garbage for operands,> 24b in

magni tude.

MOD, Which is supposed to return the remainder upon division of the

first operand by the second,t has been changed to produce an exact answer.

If the quotient were greater than 248 before, the answer was garbage. If

the quotient is that big' now, the remainder returned is the exact chopped

result. In fact, it can be AMOD'ed again to produce the desired answer.

Thus AMOD can be used to program multiple-precision diVides.

A few othor functions have been optimized, and the double precision:

in-line functions have been corrected (all of them were wrong, both in RUN

and RUNW, but the bugs were different).

Section IV: Wishes for the 'Future

The comparisons are still sonewhat unsatisfactory', since they cannot

compare against infinity without producing a mode error. Infinity should be

t1The preise definition of AMOD(XY) is: remainder when X is divided

by Y to produce only those quotient digits left of the.binary point; or,
if there are more than 48 of them, then only the leftmost 48.
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bigger 'than everything, and -infinity smaller; also, if the machine is

running. in a mode to ignore Indefinite operands, any test against indefinite

should fail. The following code-would do this, with appropriate coing at

'FAIL' /perhaps a floating add, to ilb6rt if the machine is hot in a suitable

mode,. fallowed by the production of .FALSE.).

IXO X.L-X.R INTEGER COMPARE

2R XO,EQUAL SENSE EQUAL OPERANDS
ID X.L,FAIL SENSE LEFt-OPERAND"INDEFINITE
iD X.R,FAIL SENSE RIGT OPERAND INDEFINITE

BX7 X.L-X.R ARE THE SIGN BITS DIFFERENT
* HERE WE ARE QJARDING AGAINST INTEGE.k-OVERFLOW

P X7,NOVFL SENSE NO OVERFLOW POSSIBLE

BXO X.L IF SIGNS ARE DIFFERENT, X.L TO XO-

NOVFL PL XO,GREAT SENSE LEFT OPERAND GREATER

EQ LESS SENSE LEFT OPERAND SMALLER

Note that, since the coparisons are exact, this coding-would only be

appropriate in rounded mode.

There are various other shortcomings in RUNW.2.

Relational, expressions use only real arithmetic even when comparing

double or complex variables.

A case could be made that complex arithmetic should also be done in

rounded mode, so that a user would get the -same aswer if he either used real

variables or complex variables with zero imaginary part. Currently, rounded

arithmetic affects only single -precision reals,

'We believe that in coding RBAIEXR, we set a good example by always

returning the correct sign of 0 or infinity and guaranteeing not to abort.

It would be nice if other 6rithmetic functions did this also. Since the Cal

loader presets core to -indefinite+ address of selft it woula be useful in
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error tracing to have system routines return a copy of their input argument

if it is indefinite, rather than just a standar!' indefinite. Our RBAIEXR

also does this (unless the exponent is ±O, in which case it returns 1.0

to agree with in-line' code generation).

Invisible system subroutines should have non-Fortran names. Currently,

anyone writing his own RBAIEX, or many other names, will mess things up

completely without knowing why. But the cure is not just to charge all the

names at the end of the compiler -- it has a r-5utine somewhere (I doi not know

where) that removes non-standard symbols from external names. Unless this

routine is also changed, it will just turn strange names into Fortran names.

L


